

Philips P89LPC932 Flash
Microcontroller In-Application
Programming Library Manual

Version 1.00 (24-Feb-2003), by AA
© Embedded Systems Academy 2003

Contents

Contents... 1

1. Introduction ... 3

2. Using the Library... 4
2.1 Adding to a Project .. 4
2.2 Calling Functions... 4
2.3 Execution Environment... 5
2.3 Locating Library Functions.. 5

3. Library Functions .. 6
3.1 iap_init .. 6
3.2 iap_read_version ... 7
3.3 iap_write_code .. 8
3.4 iap_erase .. 9
3.5 iap_read_sector_crc ... 10
3.6 iap_read_global_crc... 11
3.7 iap_read_code... 12
3.8 iap_read.. 13
3.9 iap_write ... 14

4. Examples.. 15

5. Library Run Time Requirements.................................... 16
5.2 Total Code Size ... 16
5.3 Data Size... 16

LPC932IAPLIB_Manual.doc 1

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

5.4 Stack ... 16

LPC932IAPLIB_Manual.doc 2

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

1. Introduction
The P89LPC932 8-bit Microcontroller from Philips provides a BootROM which
contains a routine to allow an application to perform programming operations
on the internal Flash memory. The routine may be called with varying values
in registers R3 – R7 and the Accumulator to perform the following operations:

• Read and program bytes in the Flash memory

• Read the IAP version

• Read and write the User Configuration Byte

• Read and write the Boot Vector and Status Byte

• Read and write the Security Bytes

• Erase sectors and pages

• Read sector and global CRC values

The LPC932 IAP Library (LPC932IAPLIB) provides a means to perform all the
operations by making function calls in C. No assembler needs to be written.

The library also provides pre-defined values to ease the use of certain
operations.

The first part of this manual describes each function in turn. The function
operation, parameters passed and parameters returned are detailed.

LPC932IAPLIB_Manual.doc 3

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

2. Using the Library

2.1 Adding to a Project
The library consists of a source file:

LPC932IAPLIB.A51

and a C header file:

LPC932IAPLIB.H

The library is compatible with both Raisonance and Keil 8051 Compilers. It
has been written and tested with the following versions:

• Keil C51 v7.03

• Raisonance RC51 v03.03.28

To use the library simply add the library source file to your project and include
the header file in all C source files that use the library.

2.2 Calling Functions
Before any calls to the library can be made, a call to iap_init must be
made. Please refer to the function description in this manual for details.

Each function returns the execution result in the global varible iap_status,
which is defined as an unsigned char. iap_status may contain either IAP_OK
which means the operation was successful or one or more of the following
error values:

 IAP_INTERRUPTED - operation was interrupted by an interrupt

 IAP_SECURITY - security violation occurred

 IAP_ERROR - miscellaneous error occurred

 IAP_ABORT - operation was aborted.

The library may be configured to feed the watchdog immediately before
performing an IAP operation. This should be used if the watchdog is enabled
and the timeout period for the watchdog is longer than 2ms. If the timeout
period is shorter than 2ms then IAP operations will not be able to complete in
time, even with a feed immediately before the operation. In this situation the
watchdog must be disabled before making calls to the IAP library.

LPC932IAPLIB_Manual.doc 4

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

The IAP library may be configured to disable interrupts for the duration of IAP
operations. If interrupts are not disabled then there exists a possibility that an
IAP operation may be interrupted. If that occurs then the function will return
with iap_status set to IAP_INTERRUPTED. A check must be made for this and
the function may be called again if the operation should be reattempted. Note
however, that if any interrupt occurs more frequently than 2ms, then some IAP

operations may never be completed with interrupts enabled. In that situation
the library may be configured to disable interrupts or specific interrupts may
be disabled before calling functions in the library.

2.3 Execution Environment
The functions are registerbank independent and do not use absolute register
addressing.

Before the IAP functionality of the LPC932 may be used, the brown-out
detection feature must be enabled by setting the BOE bit in User
Configuration Byte 1 (UCFG1). Although the possibility exists of writing
to UCFG1 via an IAP routine, it is strongly recommended that the
brown-out detection is NOT enabled via an IAP call, but is instead
enabled via parallel programming or In-System Programming (ISP).

The library upon initialization completes the enabling of the brown-out power
down by clearing bits 0, 1 and 5 in PCON.

Failure to enable the brown-out detect may result in IAP operations either
executing incorrectly or aborting (and therefore setting iap_status to
IAP_ABORT).

2.3 Locating Library Functions
When calling the erase functions, the IAP functions themselves and the library
code used by the IAP library must not be located inside the sector or page
being erased.

LPC932IAPLIB_Manual.doc 5

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

3. Library Functions

3.1 iap_init
Description

Configures the IAP library. This function must be called before any other
functions in the library.

Prototype
void iap_init(unsigned char configuration);

Arguments Passed
Configuration may be either be the value zero, or one or more of the following
options:

IAP_WATCHDOGFEED - configures the library to feed the watchdog

immediately before performing an IAP operation
IAP_INTDISABLE - configures the library to disable all interrupts while

performing IAP operations.

Value Returned
None

Example
iap_init(IAP_WATCHDOGFEED);
iap_init(IAP_WATCHDOGFEED | IAP_INTDISABLE);
iap_init(0);

LPC932IAPLIB_Manual.doc 6

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

3.2 iap_read_version
Description

Reads the version of the IAP code programmed onto the device at the factory.

Prototype
unsigned char iap_read_version(void);

Arguments Passed
None.

Value Returned
The IAP version number.

Example
version = iap_read_version();

LPC932IAPLIB_Manual.doc 7

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

3.3 iap_write_code
Description

Programs code memory from a buffer. The start address may be anywhere in
code memory, however the bytes programmed must fit entirely within a 64 byte
page. Therefore the largest buffer size supported is 64 bytes. The buffer must be
located in DATA memory and therefore directly addressable.

Prototype
void iap_write_code(unsigned char data *pbuffer,
unsigned int address, unsigned char length);

Arguments Passed
Pbuffer is a pointer to the buffer containing the data to program
Address is the start address to program the data at in code memory
Length is the number of bytes in the buffer to program (1 – 64).

Value Returned
None.

Example
unsigned char data buf[4];
buf[0] = 0xAA;
iap_write_code(buf, 0x1402, 4);

LPC932IAPLIB_Manual.doc 8

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

3.4 iap_erase
Description

Erases a sector or page in code memory.

Prototype
void iap_erase(unsigned char type,
unsigned int address);

Arguments Passed
Type indicates whether to erase a sector or page and is one of the following
values:

IAP_SECTOR
IAP_PAGE

Address is the starting address of the sector or page to be erased.

Value Returned
None.

Example
iap_erase(IAP_PAGE, 0x1440);
iap_erase(IAP_SECTOR, 0x1400);

LPC932IAPLIB_Manual.doc 9

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

3.5 iap_read_sector_crc
Description

Reads the 32-bit CRC value for a sector of code memory.

Prototype
unsigned long iap_read_sector_crc(unsigned int
address);

Arguments Passed
 Address is the starting address of the sector whose CRC should be read.

Value Returned

The 32-bit CRC.

Example
unsigned long crc;
crc = iap_read_sector_crc(0x1400);

LPC932IAPLIB_Manual.doc 10

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

3.6 iap_read_global_crc
Description

Reads the 32-bit CRC for the entire code memory.

Prototype
unsigned long iap_read_global_crc(void);

Arguments Passed
None.

Value Returned
The 32-bit CRC.

Example
unsigned long crc;
crc = iap_read_global_crc();

LPC932IAPLIB_Manual.doc 11

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

3.7 iap_read_code
Description

Reads a location in code memory.

Prototype
unsigned char iap_read_code(unsigned int address);

Arguments Passed
Address is the address of the location to read.

Value Returned
The value stored in the location.

Example
unsigned char byte;
byte = iap_read_code(0x1401);

LPC932IAPLIB_Manual.doc 12

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

3.8 iap_read
Description

Reads from a configuration byte.

Prototype
unsigned char iap_read(unsigned char name);

Arguments Passed
Name is the name of the byte to read, and is one of the following:

IAP_UCFG1
IAP_BOOTVECTOR
IAP_STATUSBYTE
IAP_SECURITYBYTE0
IAP_SECURITYBYTE1
IAP_SECURITYBYTE2
IAP_SECURITYBYTE3
IAP_SECURITYBYTE4
IAP_SECURITYBYTE5
IAP_SECURITYBYTE6
IAP_SECURITYBYTE7

Value Returned
The value of the configuration byte.

Example
unsigned char statusbyte;
statusbyte = iap_read(IAP_STATUSBYTE);

LPC932IAPLIB_Manual.doc 13

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

3.9 iap_write
Description

Writes to a configuration byte.

Prototype
void iap_write(unsigned char name,
unsigned char value);

Arguments Passed
Name is the name of the configuration byte to write to and is one of the
following:

IAP_UCFG1
IAP_BOOTVECTOR
IAP_STATUSBYTE
IAP_SECURITYBYTE0
IAP_SECURITYBYTE1
IAP_SECURITYBYTE2
IAP_SECURITYBYTE3
IAP_SECURITYBYTE4
IAP_SECURITYBYTE5
IAP_SECURITYBYTE6
IAP_SECURITYBYTE7

Value is the value to write to the configuration byte.

Value Returned
None.

Example
iap_write(IAP_UCFG1, 0x23);

LPC932IAPLIB_Manual.doc 14

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

4. Examples

The example included with this package demonstrates some of the features of
the library. Included is a project file for the Keil Compiler (uVision2) and a
project file for the Raisonance Compiler (RIDE). Both Compilers use the same
source files.

KLPC932IAPLIBEXAMPLE.UV2 - Keil uVision2 Project file

KLPC932IAPLIBEXAMPLE.HEX - Keil generated HEX file

KLPC932IAPLIBEXAMPLE - Keil generated AOF file

KLPC932IAPLIBEXAMPLE.M51 - Keil generated Map file

RLPC932IAPLIBEXAMPLE.PRJ - Raisonance RIDE Project file

RLPC932IAPLIBEXAMPLE.HEX - Raisonance generated HEX file

RLPC932IAPLIBEXAMPLE - Raisonance generated AOF file

RLPC932IAPLIBEXAMPLE.M51 - Raisonance generated Map file

MAIN.C - Example main source file

LPC932IAPLIB.A51 - IAP Library source file

LPC932IAPLIB.H - IAP Library header file

OSC.C - Routines to configure the oscillator

UART.C - Routines to configure and use the UART.

LPC932IAPLIB_Manual.doc 15

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

5. Library Run Time Requirements

5.2 Total Code Size
The entire library occupies 182 bytes of CODE memory.

5.3 Data Size
The library requires one byte and two bits of DATA memory.

5.4 Stack
Each function performs the usual pushing of the return address on the stack
for a function call. An additional return address is pushed onto the stack
during most of the functions in the library.

LPC932IAPLIB_Manual.doc 16

Embedded Systems Academy
50 Airport Parkway
San Jose, CA 95110

www.esacademy.com
info@esacademy.com

	Contents
	1. Introduction
	2. Using the Library
	
	2.1 Adding to a Project
	2.2 Calling Functions
	2.3 Execution Environment
	2.3 Locating Library Functions

	3. Library Functions
	
	3.1 iap_init

	Description
	Prototype
	Arguments Passed
	Value Returned
	Example
	3.2 iap_read_version

	Description
	Prototype
	Arguments Passed
	Value Returned
	Example
	3.3 iap_write_code

	Description
	Prototype
	Arguments Passed
	Value Returned
	Example
	3.4 iap_erase

	Description
	Prototype
	Arguments Passed
	Value Returned
	Example
	3.5 iap_read_sector_crc

	Description
	Prototype
	Arguments Passed
	Value Returned
	Example
	3.6 iap_read_global_crc

	Description
	Prototype
	Arguments Passed
	Value Returned
	Example
	3.7 iap_read_code

	Description
	Prototype
	Arguments Passed
	Value Returned
	Example
	3.8 iap_read

	Description
	Prototype
	Arguments Passed
	Value Returned
	Example
	3.9 iap_write

	Description
	Prototype
	Arguments Passed
	Value Returned
	Example

	4. Examples
	5. Library Run Time Requirements
	
	5.2 Total Code Size
	5.3 Data Size
	5.4 Stack

