RSS Feed

Embedded Systems Blog

CANcrypt Update: Better Security and CANopen FD support, shown at Embedded World 2018

February 20th, 2018 No comments

Today, EmSA released a software update for both the freely downloadable and the commercial version of CANcrypt. The update implements multiple recommendations from a security assessment.

As part of the NXP secure bootloader project, the experts at MathEmbedded did a security assessment of CANcrypt. The 43-page report examined possible attack vectors and potential weaknesses. Even to the original release the report stated: “We have not identified a straightforward attack that would allow an unauthorized attacker to easily accomplish all the steps [above].” But the latest update now fixes the discovered weaknesses or adds security notes and comments for application-specific configurations that need less security.

Just in time for the Embedded World 2018 in Nuremberg we can now show a first CANcrypt adaptation to CANopen FD. As CANopen FD already provides a direct, flexible communication method with USDO (Universal Service Data Object) supporting both broadcast and point-to-point communication, the easiest way to port the CANcrypt control messages to CANopen FD is to turn them into CANopen FD objects in the Object Dictionary. The CANcrypt control messages thus are “tunneled” through CANopen using dedicated Objects and USDO services. This allows implementing the CANcrypt grouping mechanism (similar to pairing, but for multiple devices). Authenticated messages are then exchanged based on a dynamically changing key. Each data transfer includes a random value that is used to continuously update the dynamic key.

Visit the CiA (CAN in Automation) at the Embedded World 2018 (hall 1, booth 1-630) to see the CANopen FD demonstrator and to learn more about CANcrypt. To download the free evaluation software or learn more about CANcrypt, visit our web pages for download and

A security #Meltdown, also for embedded systems?

January 10th, 2018 No comments

Meltdown and Spectre are considered by many to be the biggest security flaws in the history of computing, both in terms of numbers of affected devices (billions) and time they have been laying dormant (20 years). Whenever security issues like these that affect PCs and mobile devices become public, we take a look at how they might affect Embedded Systems as well. An inconvenient truth in our industry is that software in Embedded Systems does not get updated, to put it mildly, as often as regular desktop PCs. Sometimes that means “never”. That is why even “ancient” attack vectors like the WannaCry and its descendants such as Petya and NotPetya ramsomware can still cause major damage in various systems, even months or years after the underlying security issues have been made public.

The core issue behind Meltdown and Spectre is that parts of a memory protection and isolation system are being compromised on a hardware level. Such isolation is meant to ensure that one task or program can not access the memory used by another task or program and potentially spy out sensitive information. The “good news” for most older chips and many embedded microcontroller devices first: They often don’t have a vulnerable memory isolation logic (involving out-of-order or speculative code execution) in the first place. It is actually worse: The memory in most lower-end embedded chips is wide open to all running tasks. While some microcontrollers do provide an MPU (Memory Protection Unit, see ARM Community for an example), it is often limited in terms of number of memory areas, sizes and number of levels/tasks supported. From our experience it is safe to say that a large number of embedded applications doesn’t make use of it at all. And when an MPU is used, then the primary goal is often to protect code against memory-crossing bugs to make it safer against failure, but not attacks. With these types of systems, once a hacker manages to execute some code on an embedded device, this code should be assumed to immediately have access to all resources of the chip, including the memory.

This looks like a devastating assessment from a security standpoint, however, injecting code into an embedded microcontroller is not easy. Many such systems do not use an operating system at all, have no command line or only a very limited user interface without the option to load and start a piece of code. Typically the only way to inject code is through a bootloader or a debug interface, if at all. It is up to the system designers, sometimes the factory programming and the program running on an embedded microcontroller to disable casual access to these functions.

We know that for many designers of embedded systems, the time they can spend on security issues is limited. If you are part of this group, you may use the publicity around Meltdown and Spectre to justify some extra time to review potentially vulnerabilities to attacks that are based on the same principle: to load or inject malicious code that spies out or manipulates data in your embedded system.

For such a review, first look for all options how code could be injected into your system or altered. Could an attacker make use of any of the provided bootloader mechanisms or the debug interface? If you can’t disable all of these because you need to be able to update “legitimate” code, then authentication is mandatory and encryption during transmission highly recommended. Preferably implement different layers of authentication, for example one to access the interface to update code and another one to protect the code itself. For an example see the secure secondary bootloader we implemented for NXP. Also, review if your microcontroller has a MPU or similar and how you can make best use of it not only to protect the system from buggy code but also from intentional attacks.

CANopen Magic now supports CANopen FD

December 11th, 2017 No comments

It was a lengthy process. Along with other experts we from Embedded Systems Academy participated in the CANopen FD definition group for more than 2 years now. Initially some only wanted a few changes. However as CAN FD is not backward compatible to CAN (classic CAN controllers produce error frames when they see a CAN FD message) the majority saw the chance to “dump complete backward compatibility” and add new and advanced features. The previous SDO communication (request-response scheme between one master and multiple devices) was replaced with the USDO communication – the Universal Service Data Object.

A first version of the definition of CANopen FD (CiA 1301) was released by the CiA in October this year. It is available from the CiA on request ( Some of the new features include:

  • TPDOs can now have up to 64 bytes of data (previous 8)
  • Full USDO mesh definition – every node can send client requests to every other node
  • USDO communication may be a broadcast to all nodes

The USDO service allows any device to send service requests to any other device, without the need for a master or manager to be involved. This greatly improves plug-and-play support and self-configuring systems, as now each device independently can analyse its surroundings: which devices are on this network and what kind of communication objects do they have available.

We at Embedded Systems Academy are now adding CANopen FD support to all our CANopen products. The first line of products supporting CANopen FD is our CANopen Magic software for the analysis and test of networks. As of the latest release (V9.0) all CANopen Magic products support both CANopen and CANopen FD. For CANopen FD an appropriate CAN FD interface must be connected. All of our current tests have been made with the PCAN-USB FD and PCAN-USB Pro FD interfaces from PEAK System.

We are currently in the process of contacting all current CANopen Magic users to inform them about their upgrade options. If you are using CANopen Magic and have not yet received an email from us about your upgrade options, please contact us.

News from iCC17 & EW17, CANcrypt released

March 20th, 2017 No comments

The last two weeks were very exciting for us: We held several papers at the International CAN Conference and Embedded World (both in Nuremberg, Germany), participated in the first CANopen FD demonstrator at both events – with the new NXP LPC54618 – and finally released our book “Implementing scalable CAN security with CANcrypt”.

The CANopen FD demonstrator at the CiA (CAN in Automation) booth showed one of the new features of CANopen FD: segmented broadcast of larger data blocks with “Universal Service Data Objects” (USDOs). This feature can be used to broadcast images, configuration tables or even firmware updates. Here, any participant could be commanded to broadcast an image to all other participants. Such use cases were almost unthinkable with classic CANopen communication.

At Embedded World, PHYTEC showed a Nano Dimension 3D printer for PCBs. Prototyping your printed circuit boards just became a lot easier and faster. The circuits are printed with a highly conductive ink. It looks like the machine can directly produce boards from Gerber files.

At the NXP booth, one of the demos featured the NXP LPC54618 microcontroller with two CAN FD interfaces. The “FD” (Flexible Data rate) allows the data portion of a CAN message to be transmitted at higher bit rates. So far, classical CAN was limited to 1 Mbps. With currently available transceivers the data rate can now be up to 5 Mbps. Also in CAN FD, the maximum payload for each message is 64 bytes compared to eight bytes in traditional CAN. The demo compared different firmware download speeds. Using CAN FD, updates can now be transferred multiple times faster than before.

The release of our book about CANcrypt ( stirred a lot of interest and we had many engaged discussions, also with some security experts. CANcrypt is a security framework and the security level actually used is configurable. As usually, there is a trade-off: the more security you require, the more resources both in CPU time as well as in memory space you need. For a configuration on the upper end of security, proven encryption methods like AES-128 can be used. It will be interesting to see if the lower-end lightweight “Speck” cipher reaches adequate security levels, too.

A first potential weak spot in one of the initial published configurations (user section, where user’s are setting up their own security configuration) was already discovered and is currently improved. The encryption of the secure heartbeat accidentally used only limited parts of the shared dynamic key, reducing the effective key to 32-bit. However, CANcrypt supports key sizes of up to 1024-bit. The next release will use a demo where a larger key is applied properly.

To learn about our bounty program, stay tuned by joining our mailing list or following us on twitter . Within the next few weeks we will start such a program to encourage others to search for possible flaws in the CANcrypt implementation.

CANopen Architect Professional Released

December 6th, 2016 No comments

We have released a new version of CANopen Architect, aimed at advanced users. The new Professional version builds upon the features found in the Standard version adding new functionality for quicker data entry and ideal for developers of CANopen products.

The Professional version can export Electronic Data Sheets as Word documents, allowing automatic generation of product manuals and internal documentation. Enter a descriptive text for each entry, choose the export options and save. The output can be used as a standalone manual or can be copied and pasted into an existing manual. Options are provided for using a template document and styling headings and tables.

A user-friendly PDO configuration window has been added. The new window allows quick and easy PDO creating and editing at a higher level than Object Dictionary entries. Mappings can be changed and reviewed without worrying about needing to keep the various underlying Object Dictionary entries consistent. Users of our CANopen Magic configuration and analysis tool will find the new window immediately familiar.

The new version provides an integrated command line interface allowing power users to quickly create and manipulate large amounts of PDOs. Commands can be placed into files and executed in a single step. Multiple commands for a variety of situations are provided and will be added to from time to time.

For details of the new features and to try the evaluation version please visit the CANopen Architect website.

Existing users of CANopen Magic Standard are able to upgrade. Please contact us for pricing.

Micro CANopen update, latest conformance test

December 17th, 2013 No comments

ESAcademy recently released an update for its Micro CANopen source code software including an update to the CANopen Architect EDS editor and code generator. This update includes changes that were made to pass the latest Version 1.0.1 of the official CANopen conformance test by the CiA. The changes required mainly consisted of adapting SDO abort codes to the required values. For further changes, please refer to the release notes of the individual products. Customers with ongoing support service may download the latest versions from