RSS Feed

Embedded Systems Blog

Secure CANcrypt CAN FD Bootloader for NXP LPC546xx

June 15th, 2017 No comments

Together with NXP, the Embedded Systems Academy implements a secure CAN FD bootloader based on the CANcrypt security protocols. The bootloader will be available to users of the LPC546xx as free download. It is a “secondary bootloader”, meaning that it only provides security for the added bootloading channel, in this case the CAN FD interface. Someone with physical access to the LPC546xx will always be able to use the primary, on-chip bootloader to re-flash the device with any code.

The security system of the bootloader uses two security levels, each based on a symmetric key (default 128bit, up to 1024bit optional).

  1. On the CAN FD communication level, the CANcrypt protocol (www.cancrypt.eu) is used to ensure that only an authorized communication partner can activate the bootloader, erase the flash memory and send new code to the LPC546xx. The CANcrypt connection key used for this level is generated by the system builder or integrator that initially assembles the entire system.
  2. On the file transfer level, the file containing the new code to be loaded is encrypted using an encryption and authentication method based on a code protection key that gets programmed into the LPC546xx at the same time when the bootloader is installed (typically at manufacturer end-of-line assembly and test).
Secure bootloader security levels

Figure: Secure bootloader security levels

These two levels ensure a separation of the security features between manufacturer and system integrator/builder or service technician. Only an authorized technician will be able to connect his diagnostic device or software to the bootloader. But at this security level alone it will not be possible to generate authorized firmware, that requires an additional key only known to the manufacturer.

If you want to learn more about this bootloader, register now for the webinar (Thursday, June 29, 5:00 PM – 6:00 PM CEST) on the NXP website at: http://www.nxp.com/support/training-events/online-academy/lpc54000-series-online-training:LPC54000-Series-Online-Training

The version for free download is a binary only and will use a pre-selected cipher algorithms, fixed default configuration for parameters like CAN FD bit rates, CAN IDs and timings and timeouts used. The full source code is available from Embedded Systems Academy, giving users full control over all configurations and cipher algorithms used.

What CAN you accomplish with CAN-FD? – A Two-Part Webinar Series

May 17th, 2017 No comments

NXP offers a Two-Part Webinar based on the LPC54000 series about CAN-FD and secure bootloaders.

Part I: “An intro to CAN-FD” will be held on Thursday, May 25, 5:00 PM – 6:00 PM CEST.
In this webinar CAN bus expert Andy Ayre from Embedded Systems Academy will give you a technical overview of the improvements and benefits of CAN-FD over classic CAN, and how to specifically leverage this new technology on the LPC54618 MCU.

Part II: “CAN stack porting and secure bootloaders” will be held on Thursday, June 29, 5:00 PM – 6:00 PM CEST.
Experts from Embedded Systems Academy explain the requirements for an implementation of secure and non-secure bootloaders in CAN and CAN-FD systems – leveraging the LPC546xx MCU family as an example.

Register now for these events on the NXP website at: http://www.nxp.com/support/training-events/online-academy/lpc54000-series-online-training:LPC54000-Series-Online-Training

 

Impressions from the Embedded World 2015

March 2nd, 2015 No comments

With about 900 exhibitors the Embedded World reached a size where it is impossible to “see it all”. Yes, you can still walk by all booths in a day, but you might easily miss hidden highlights. It was quite obvious that IoT – the Internet of Things – is a current hype. To me this is quite astonishing as already some 10+ years ago we built an “Embedded Internet Demo” – at that time based on a Philips 8051 with a dial-up modem connected. The main difference between now and then is that now smart phones are widely spread and we are “always online” and now can access our embedded devices “at any time”. Among the visitors one could recognize a lot of skepticism for what exactly we really need the IoT, other then it being hip and cool to be able to control “everything” with our smart phone.

An unusual approach to get remote access to embedded applications was shown by Raisonance (http://www.iotize.com) – they have a miniature NFC or Bluetooth module that connect to the JTAG/SWD debug port of an application. So it can be added to any application with debug port, sometimes even without the need to re-compile the code, if you have the knowledge where in memory the variables are that you want to have remote access to. A great tool to get started with IoT without requiring a re-design of existing hardware.

At the CiA (CAN in Automation) booth a CAN FD demo integrated devices and tools from multiple vendors. CAN FD (Flexible Data) allows higher bit rates and longer contents (up to 64 bytes) of the data frame. Especially bootloader applications and other software update features benefit from the higher data throughput. For such applications it seems to be possible to increase the effective data throughout 8 fold easily, potentially even more.

We at ESAcademy further enhanced our portfolio of CANopen Diag products. There is now a second hardware, based on PEAK’s mini Display, that offers a subset of the diagnostic features provided at a price point of well below 1000 Euro. The CANopen Test Machine System part of the CANopen Diag now allows to create tests based on MS Visio graphs. The transitions in a state diagram can be used to transmit or receive a CAN/CANopen message or to influence/set/test/query variables or timers. More details and examples will be published shortly.

NXP introduces dual-core ARM Microcontroller

November 3rd, 2010 No comments

The new LPC4000 family of microcontrollers from NXP Semiconductors combines two powerful ARM Cortex cores in one microcontroller. The integrated Cortex-M4 and Cortex-M0 can run asymmetrically at up to 150MHz and have access to internal memory of up to 1MB Flash and 264k of RAM.
A multilayer bus matrix with 4 separate RAM blocks ensures that both microcontrollers have independent, fast access to “their” memory, minimizing wait-states.
Next to the “usual” LPCxxx peripherals the new devices also feature high-speed USB and an AES decryption engine for security.
There are several applications that benefit from a dual core solution. If a lot of communication is required, like handling complex communication protocols with specific timing requirements, a dual-core solutions allows using one core as a communication co-processor, clearly separating communication and process handling.
For more information, see NXP’s web pages.

From Embedded World: trend towards 32bit and ARM continues

March 5th, 2010 No comments

I was visiting Embedded World this week and in regards to microcontrollers the trend towards 32bit continues. When it comes to marketing presence at a trade show, obviously less than 32bit where not “it” this year. Not only chip manufacturers, but also most of the development tools primarily focused on 32bit solutions. And the next impression one gets walking the aisles: ARM processors are the first choice in this arena, with a focus on the Cortex-M generation. At this year’s Embedded World, no other microcontroller architecture had a marketing presence anywhere near that of ARM. Read more…

From Embedded World: most “fun” evaluation board

March 5th, 2010 No comments

Whenever a new microcontroller generation comes out, developers and engineers look out for evaluation boards. In order to be able to test the microcontroller, it needs to be mounted on a PCB that has the required glue logic, power circuitry and connectors. For generations, these test boards were mostly “bare-naked” – without housing and only featuring components needed to test the microcontroller in certain types of applications. Over the last years more “attractive” variations of such boards have come to market, for example some looking like a custom USB stick.

Last year, Raisonance released products following a slightly different concept they named Primers, and the Primer2 won an EETimes product of the year 2009 award. These boards feature a complete housing, making them more attractive for various prototype developments. Through staging several design contests, many applications have been implemented and are now shared on the product’s web page. Applications include an alcohol meter, a CAN monitor, a GPS displaying OpenStreetMap data, various games and many more. Read more…