

www.em-sa.com/nxp

EmSA CANopen (FD) Libraries for NXP SDKs

User Manual
Based on Version 7.00 of Micro CANopen Plus

27
th

 of September 2019

http://www.em-sa.com/nxp

2 EmSA’s CANopen Libraries for NXP SDK

Software License

Copyright (c) 2019, Embedded Systems Academy

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer in the

 documentation and/or other materials provided with the distribution.

 * Binary and Library files provided may not be disassembled or decompiled

 or modified in any way.

 * An application that includes any part of this software may execute

 only on an NXP processor or microcontroller.

 * Neither the name of the Embedded Systems Academy nor the

 names of its contributors may be used to endorse or promote products

 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL EMBEDDED SYSTEMS ACADEMY BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3 Contents

Contents

Software License.. 2

Contents .. 3

1 About CANopen (FD) ... 7

1.1 CANopen Documentation and Terms .. 7

1.2 CANopen and CANopen FD .. 8

1.3 CANopen Devices and CANopen Manager .. 8

2 CANopen (FD) in the NXP SDK ... 9

2.1 Release notes ... 9

2.2 The License Summary .. 9

2.3 CANopen vs CANopen FD ... 9

2.4 CANopen Devices and CANopen Manager .. 9

2.4.1 Features of the CANopen Device Library ... 9

2.4.2 Features of the CANopen Manager Library (incl. Device Library) ... 9

2.5 Object Dictionary Configurability ... 9

2.6 Limitations ... 10

2.7 Extended testing and debugging.. 10

3 Getting started, step-by-step .. 11

3.1 Hardware setup ... 11

3.2 Network Monitoring .. 12

3.3 Loading the Software ... 12

3.4 Running the examples .. 12

3.5 CANopen Device: generic I/O Example Application ... 14

3.6 CANopen Manager: Control Example Application ... 15

4 Using the CANopen Libraries ... 16

4.1 File and Directory Structure ... 16

4.1.1 Common Shared Directory .. 16

4.1.2 Library Directory .. 16

4.1.3 Configuration Directory ... 16

4.1.4 Application Directory ... 16

4.1.5 Project Directory .. 17

4.2 CANopen Functional Overview .. 17

4.2.1 Node ID .. 17

4.2.2 Process Image Usage ... 17

4.2.3 Object Dictionary and SDO/USDO Server .. 18

4 EmSA’s CANopen Libraries for NXP SDK

4.2.4 Heartbeat Producer ... 18

4.2.5 PDO Parameters... 18

4.2.6 Number of PDOs .. 18

4.2.7 Emergency Producer and Emergency messages ... 18

4.2.8 Emergency Consumer .. 19

4.2.9 Heartbeat Consumer ... 19

4.2.10 Store Parameters ... 19

4.2.11 Layer Setting Services .. 19

5 Application Interface ... 20

5.1 The Process Image ... 20

5.1.1 Configuration of the Process Image ... 20

5.1.2 Accessing the Process Image ... 20

5.1.3 Data alignment .. 20

5.1.4 Data Integrity of the Process Image in an RTOS Environment ... 20

5.2 Object Dictionary Configuration .. 21

5.3 CANopen API Functions and Macros .. 21

5.3.1 The MCO_Init function .. 21

5.3.2 The MCO_InitxPDOx functions .. 21

5.3.3 The MCO_ProcessStack function ... 22

5.3.4 The MCO_TriggerTPDO function .. 22

5.3.5 The MCOP_InitHBConsumer function ... 22

5.3.6 The MCOP_PushEMCY and MCOP_PushEMCYFD functions .. 23

5.3.7 Process Image Access Macros: The PI_READ macro .. 24

5.3.8 Process Image Access Macros: The PI_WRITE macro .. 24

5.3.9 Process Image Access Macros: The PI_COMP macro .. 25

5.3.10 Default Process Image Access Macros .. 25

5.3.11 Macros for PDO process image access .. 25

5.4 CANopen API Call-Back Functions .. 25

5.4.1 The MCOUSER_ResetCommunication function ... 26

5.4.2 The MCOUSER_ResetApplication function .. 26

5.4.3 The MCOUSER_GetSerial function ... 26

5.4.4 The MCOUSER_NMTChange function ... 27

5.4.5 The MCOUSER_FatalError function ... 27

5.4.6 The MCOUSER_ODData function ... 27

5.4.7 The MCOUSER_SYNCReceived function .. 28

5.5 Manager API ... 28

5.5.1 The MGR_ProcessMgr function ... 28

5 Contents

5.5.2 The MGR_TransmitNMT function.. 28

5.6 Manager Multi-Scan API .. 29

5.6.1 The MGRSCAN_Init function .. 29

5.6.2 The MGRSCAN_GetStatus function ... 29

5.7 Manager API Call-Back Functions ... 30

5.7.1 The MGRCB_NodeStatusChanged function ... 30

5.8 SDO Client API .. 31

5.8.1 The SDOCLNT_ResetChannels function ... 31

5.8.2 The SDOCLNT_Init function ... 31

5.8.3 The SDOCLNT_Read function .. 31

5.8.4 The SDOCLNT_ReadXtd function ... 32

5.8.5 The SDOCLNT_Write function ... 32

5.8.6 The SDOCLNT_WriteXtd function .. 33

5.8.7 The SDOCLNT_GetStatus function ... 33

5.8.8 The SDOCLNT_GetLastAbort function ... 33

5.8.9 The SDOCLNT_BlockUntilCompleted function .. 34

5.8.10 The SDOCLNT_ReadCycle function .. 34

5.8.11 The SDOCLNT_WriteCycle function ... 34

5.8.12 The SDOCLNTCB_SDOComplete call-back function .. 35

6 Appendix – Using Auto-Generated Sources .. 36

6.1 File Generation ... 36

6.2 File Integration ... 36

6.2.1 pimg.h .. 36

6.2.2 stackinit.h .. 36

6.2.3 entriesandreplies.h .. 37

7 Appendix – RTOS Integration .. 38

7.1 RTOS Task: Receive and Tick .. 38

7.2 Process Image Integrity .. 38

8 Appendix – CANopen Code Configuration... 39

8.1 Default Configuration of nodecfg.h ... 39

8.1.1 #define ENFORCE_DEFAULT_CONFIGURATION [0|1] ... 39

8.2 General Settings of nodecfg.h .. 39

8.2.1 #define USE_MCOP [1] .. 39

8.2.2 #define CHECK_PARAMETERS [0|1] .. 39

8.2.3 #define USE_LEDS [0|1] ... 39

8.3 PDO Settings of nodecfg.h ... 39

8.3.1 #define NR_OF_RPDOS [num] ... 39

6 EmSA’s CANopen Libraries for NXP SDK

8.3.2 #define NR_OF_TPDOS [num] ... 39

8.3.3 #define USE_EVENT_TIME [0|1] .. 40

8.3.4 #define USE_INHIBIT_TIME [0|1] .. 40

8.3.5 #define USE_SYNC [0|1] .. 40

8.3.6 #define USE_DYNAMIC_PDO_MAPPING [0|1] .. 40

8.4 NMT Service Settings of nodecfg.h .. 40

8.4.1 #define AUTOSTART [0|1] ... 40

8.4.2 #define DEFAULT_HEARTBEAT [ms] .. 40

8.4.3 #define DYNAMIC_HEARTBEAT_CONSUMER [0|1], #define NR_HB_CONSUMER [num] 40

8.4.4 #define USE_EMCY [0|1], #define ERROR_FIELD_SIZE [num] .. 41

8.4.5 #define USE_NODE_GUARDING [0] ... 41

8.4.6 #define USE_STORE_PARAMETERS [0|1], #define NVOL_STORE_START [num], #define

NVOL_STORE_SIZE [num] .. 41

8.4.7 #define NR_OF_SDOSERVER [0] .. 41

8.4.8 #define USE_SLEEP [0|1] ... 41

8.5 CANopen FD Settings of nodecfg.h .. 41

8.5.1 #define USE_CANOPEN_FD [0|1] .. 41

8.5.2 NR_OF_USDO_CONNECTIONS [2] ... 42

8.5.3 USDOSEGSRVRX_B2B_PROC [0] .. 42

8.5.4 USDOSEGSRVRX_REQ_TIMEOUT [2500].. 42

8.6 Other Settings of nodecfg.h ... 42

8.6.1 #define USE_CiA447 [0] ... 42

8.6.2 #define USE_SDOMESH [0] .. 42

8.7 User Call-Back Functions of nodecfg.h ... 42

8.7.1 #define USECB_NMTCHANGE [0|1]... 42

8.7.2 #define USECB_SYNCRECEIVE [0|1]... 42

8.7.3 #define USECB_RPDORECEIVE [0|1] .. 42

8.7.4 #define USECB_ODDATARECEIVED [0|1] .. 43

8.7.5 #define USECB_TPDORDY [0|1] ... 43

8.7.6 #define USECB_SDOREQ [0|1] ... 43

8.7.7 #define USECB_SDO_RD_PI [0|1] .. 43

8.7.8 #define USECB_SDO_RD_AFTER [0|1] ... 43

8.7.9 #define USECB_SDO_WR_PI [0|1] ... 43

8.7.10 #define USECB_SDO_WR_AFTER [0|1] ... 43

8.7.11 #define USECB_APPSDO_READ [0|1] .. 43

8.7.12 #define USECB_APPSDO_WRITE [0|1] .. 44

8.8 Manager and common SDO/USDO settings of nodecfg.h ... 44

7 About CANopen (FD)

8.8.1 #define MONITOR_ALL_NODES [0|1] ... 44

8.8.2 #define USE_FULL_NODELIST [0|1] ... 44

8.8.3 #define NR_OF_HBCHECKS_PERCYCLE [num] ... 44

8.8.4 #define NR_OF_SDO_CLIENTS [num] .. 44

8.9 SDO settings of nodecfg.h .. 44

8.9.1 #define SDO_REQUEST_TIMEOUT [num] .. 44

8.9.2 #define SDO_BACK2BACK_TIMEOUT [num] .. 44

8.9.3 #define USE_BLOCKED_SDO_CLIENT [0|1] ... 45

8.9.4 #define SDO_BLK_MAX_SIZE [4-127] .. 45

8.9.5 #define SDOCLNTCB_APPSDO_WRITE [0|1] ... 45

8.10 USDO settings of nodecfg.h ... 45

8.10.1 #define USDO_REQUEST_TIMEOUT [num] ... 45

8.10.2 #define USDO_B2BDELAY_MAX [num] ... 45

8.10.3 #define USDO_FLAGTYPE_64 [0|1] ... 45

8.10.4 #define USDOCLNTCB_APPSDO_WRITE [0|1]... 45

 1 About CANopen (FD)

CANopen and CANopen FD are CAN (Controller Area Network, standardized in ISO 11898 series) protocols

usable for almost any type of application. One of the primary uses cases is “embedded machine control”,

so any machinery handling materials or moving, driving, swimming, flying. The CANopen and CANopen FD

specifications are maintained by the CAN in Automation (CiA) international user’s and manufacturer’s

group (www.can-cia.org).

1.1 CANopen Documentation and Terms
It is assumed that programmers using the CANopen

libraries have a general understanding about how CAN-

open works. In addition, they should either have access

to the CANopen specifications or a CANopen book such

as “Embedded Networking with CAN and CANopen”

(www.CANopenBook.com). Another source for infor-

mation is our video channel at

www.youtube.com/channel/UC_0gfAr6KRkbYiyqicFFzfg.

This manual does not explain regular CANopen features,

functions and terms other than the ones below:

 Node ID:
each CANopen device physically connected to
CAN requires a unique node ID in the range of 1
to 127 and is then referred to as a CANopen
node.

 Object Dictionary:
each CANopen node provides an Object Dic-
tionary (OD). Single entries (parameters) in the
OD are addressed using an Index and Subindex

http://www.can-cia.org/
http://www.canopenbook.com/
http://www.youtube.com/channel/UC_0gfAr6KRkbYiyqicFFzfg

8 EmSA’s CANopen Libraries for NXP SDK

value. In summary, the OD is a list of all parameters that the node can communicate via CANo-
pen.

 Process Image:
in the CANopen libraries, all OD process data communicated is stored in a process image. Individ-
ual entries are addressed using an offset value. Here process image layout and offsets are auto-
generated by the CANopen Architect EDS editor.

 EDS:
Electronic Data Sheets store the OD configuration of a CANopen device.

 NMT State:
a CANopen node implements a network management state machine. The states available in
CANopen (FD) are Boot, Pre-Operational, Operational, Stopped.

 NMT Master:
the network management master sets the NMT state of nodes by transmitting the NMT Master
message.

 Bootup/Heartbeat:
each CANopen node produces a bootup and a cyclic heartbeat message. The message content is
the current NMT state of the node.

 EMCY:
CANopen nodes can produce emergency messages to inform others of errors or alarms.

 SDO:
Service Data Object (available in CANopen) is a request and response communication service to
access entries in the Object Dictionary of a node.

 USDO:
the Universal Service Data Object (available in CANopen FD) is an extended request and response
communication service to access entries in the Object Dictionary of one or multiple nodes.

 Client (SDO or USDO):
the (U)SDO client sends an OD read or write request to one or multiple (U)SDO server.

 Server (SDO or USDO):
the (U)SDO server sends responses to OD read or write requests received from clients. It “serves”
the data from its own OD to the network.

 PDO:
Process Data Objects are application or time triggered messages containing the data from one or
multiple OD entries.

1.2 CANopen and CANopen FD
The original specifications for the protocols are available at no cost through the CAN in Automation (CiA)

international user’s and manufacturer’s group (www.can-cia.org).

 For CANopen, refer to document CiA 301 “CANopen application layer and communication pro-
file” version 4.2.0.

 For CANopen FD, refer to CiA 1301 “CANopen FD Application Layer and Communication Profile”
version 1.00.

 For CANopen Manager functionality, refer to CiA 302-x documents like CiA 302-2 “CANopen addi-
tional application layer functions – Network Management”.

 For Device and Application profiles, refer to CiA 4xx documents such as CiA 401 “CANopen device
profile for generic I/O modules”.

1.3 CANopen Devices and CANopen Manager
Our implementations support both a CANopen Device (sometimes still referred to as a “slave”) and the

CANopen Manager. The CANopen Manager is typically used by a control application (controlling all the

connected devices) and always includes a CANopen Device, too.

http://www.can-cia.org/

9 CANopen (FD) in the NXP SDK

 2 CANopen (FD) in the NXP SDK
The CANopen Libraries for this distribution are provided by Embedded Systems Academy and are based on

their Micro CANopen Plus implementation version 7.0. See www.em-sa.com/nxp for more information.

2.1 Release notes
This manual is for the initial release prepared on 29

th
 of September 2019.

See www.em-sa.com/nxp for a list of available releases.

2.2 The License Summary
See page 2 of this manual for the complete license text. In short: the libraries are free to use with the NXP

devices they are published for. Do not modify the library in any way.

2.3 CANopen vs CANopen FD
Our implementations support both CANopen and CANopen FD.

CANopen FD will be available in the SDK by Q2/2020.

2.4 CANopen Devices and CANopen Manager
Depending on the libraries chosen, a CANopen Device and the CANopen Manager are provided.

2.4.1 Features of the CANopen Device Library

 Node ID must be in range from 1 to 10

 Configurable Object Dictionary to allow support of most Device and Application Profiles

 Bootup and Heartbeat producer

 EMCY producer

 (U)SDO server

 Maximum of 8 PDOs (4 RPDO / 4 TPDO)

2.4.2 Features of the CANopen Manager Library (incl. Device Library)

 Handling of up to 10 nodes (node id of devices must be in range of 1 to 10)

 Monitoring Bootups, Heartbeats and NMT States of all nodes

 (U)SDO client access to nodes (send read/write requests to any OD entry)

 Autoscan of multiple entries after device detection

 EMCY consumer

 Maximum of 32 PDOs (16 RPDO / 16 TPDO)

2.5 Object Dictionary Configurability
The Object Dictionary contents can be freely configured using EmSA’s CANopen Architect Standard EDS

editor available from www.em-sa.com/nxp. The editor can be used to create or modify the Object Dic-

tionary used by a CANopen (FD) node. A configuration can be saved as EDS but also exported for inclusion

in the CANopen libraries. The option “Export Micro CANopen Plus Sources…” generates the C definition .h

files used by the libraries.

http://www.em-sa.com/nxp
http://www.em-sa.com/nxp
http://www.em-sa.com/nxp

10 EmSA’s CANopen Libraries for NXP SDK

The optional professional version offers extended features like documentation export and advanced con-

sole commands to manage a large number of devices, entries and PDOs.

2.6 Limitations
The CANopen (FD) libraries provided with the NXP SDK do not implement all CANopen (FD) features and

functions available. The functionality included is suitable for simple I/O devices and minimal control appli-

cations that can pass the official CANopen Conformance Test. The limitations are shown in the table be-

low.

Device Library

Manager Library

Commercial libraries

from EmSA

Node ID selection 1 to 10 1 to 10 1 to 127

Transmit PDO 0 to 4 0 to 16 0 to 512

Receive PDO 0 to 4 0 to 16 0 to 512

OD entries virtually unlimited virtually unlimited virtually unlimited

Maximum nr of nodes

handled (Manager)

n.a. 10 127

Extended functionality, commercial libraries are available from EmSA, see www.em-sa.com/nxp.

2.7 Extended testing and debugging
For test and analysis of the CANopen (FD) communication any CANopen (FD) monitoring, configuration or

analysis tools like www.canopenmagic.com can be used.

Extended functionality libraries are available from EmSA, see www.em-sa.com/nxp for details.

http://www.em-sa.com/nxp
http://www.canopenmagic.com/
http://www.em-sa.com/nxp

11 Getting started, step-by-step

 3 Getting started, step-by-step
This chapter describes the steps involved to operate the CANopen examples provided.

3.1 Hardware setup
You need two boards supported by

the CANopen libraries to operate this

example. One board is programmed

with the CANopen Device example,

the other one is programmed with

the CANopen Manager example.

Note that some boards require an

optional CAN FD shield to provide

the CAN connector. See www.em-

sa.com/nxp for a list of supported

boards.

The CAN DB9 ports used must be

properly connected with CAN ca-

bling, as a minimum the pins CAN_L,

CAN_H and GND need to be connected. Often RS232 cables like shown above can be used with gender

changers. (NO Null-Modem cable!).

Termination resistors are required at both ends of the network. Many evaluation boards have these al-

ready on-board, typically jumpers are used to enable/disable them.

http://www.em-sa.com/nxp
http://www.em-sa.com/nxp

12 EmSA’s CANopen Libraries for NXP SDK

The setup in the previous picture consist of one LPCXpresso54628 and LPCxpresso54S018 each with a CAN

shield and termination resistors enabled. A RS232 cable with one gender changer, a ‘Y’ (or’T’) cable and a

PCAN-USB FD to monitor the CANopen communication.

3.2 Network Monitoring
It is highly recommended to use a CAN, or better CANopen monitoring and analysis tool (like

www.canopenmagic.com) also connected to the network. This allows you to monitor the CANopen traffic

exchanged by the two nodes and transmit further interactive test messages.

The default bitrate of the example sis 500kbps.

3.3 Loading the Software
The CANopen library examples can be installed and programmed in the same manner as other NXP SDK

program examples. Simply select the evaluation board and the CANopen device or manger example and

use your preferred tool chain to program the software into the flash memory of the boards.

One board needs the CANopen Device example programmed, the second the CANopen Manager example.

Initially use the debug versions of the libraries, these provide outputs to the debug console.

3.4 Running the examples
If you power-up or start both devices at the same time and have a CANopen monitor connected, then you

will see CANopen messages exchanged as shown in the following table.

Msg
Nr ID Message Type Node Details

Data (Hex),
Comment

1 0x703 Bootup 0x03 (3)
 2 0x083 Emergency 0x03 (3) [0x0000 (0)] Error reset or no error 00 00 00 00 00

3 0x701 Bootup 0x01 (1)
 4 0x081 Emergency 0x01 (1) [0x0000 (0)] Error reset or no error 00 00 00 00 00

5 0x701 Heartbeat/Node Guarding 0x01 (1) Operational
 6 0x000 NMT Master Request All Reset MGR: reset all nodes

7 0x703 Bootup 0x03 (3)
 8 0x000 NMT Master Request 0x03 (3) Pre-Operational

 9 0x083 Emergency 0x03 (3) [0x0000 (0)] Error reset or no error 00 00 00 00 00

10 0x603 SDO Download Request 0x03 (3) [0x1017,0x00] Producer HB Time, exp. EE 02

11 0x583 SDO Download Response 0x03 (3)

Write 750ms
12 0x603 SDO Download Request 0x03 (3) [0x1016,0x01] Consumer HB Time 1, exp. E8 03 01 00

13 0x583 SDO Download Response 0x03 (3)

Write 1000ms
14 0x701 Heartbeat/Node Guarding 0x01 (1) Operational

 15 0x603 SDO Initiate Upload Request 0x03 (3) [0x1000,0x00] Device Type Read device type

16 0x583 SDO Upload Response 0x03 (3) 91 01 00 00, expedited 91 01 00 00

17 0x603 SDO Initiate Upload Request 0x03 (3) [0x1018,0x01] Identity - Vendor ID Read vendor id

18 0x583 SDO Upload Response 0x03 (3) DC 02 00 AF, expedited DC 02 00 AF

19 0x603 SDO Initiate Upload Request 0x03 (3) [0x1018,0x02] Identity - Product Code Read product code

20 0x583 SDO Upload Response 0x03 (3) 10 00 DE C0, expedited 10 00 DE C0

21 0x000 NMT Master Request 0x03 (3) Operational
 22 0x183 Default: PDO

Default: TPDO 1 of Node 0x03 (3) 04 02 00 00

23 0x283 Default: PDO

Default: TPDO 2 of Node 0x03 (3) 01 00 00 00

24 0x183 Default: PDO

Default: TPDO 1 of Node 0x03 (3) 04 02 00 00

25 0x701 Heartbeat/Node Guarding 0x01 (1) Operational
 26 0x283 Default: PDO

Default: TPDO 2 of Node 0x03 (3) 02 00 00 00

27 0x183 Default: PDO

Default: TPDO 1 of Node 0x03 (3) 04 02 00 00

28 0x183 Default: PDO

Default: TPDO 1 of Node 0x03 (3) 04 02 00 00

29 0x183 Default: PDO

Default: TPDO 1 of Node 0x03 (3) 04 02 00 00

30 0x283 Default: PDO

Default: TPDO 2 of Node 0x03 (3) 03 00 00 00

31 0x701 Heartbeat/Node Guarding 0x01 (1) Operational
 32 0x703 Heartbeat/Node Guarding 0x03 (3) Operational
 33 0x603 SDO Initiate Upload Request 0x03 (3) [0x1008,0x00] Manuf. Device Name
 34 0x303 Default: PDO

Default: RPDO 2 of Node 0x03 (3) 01 01 00 00

35 0x203 Default: PDO

Default: RPDO 1 of Node 0x03 (3) 00 00 00 00

http://www.canopenmagic.com/

13 Getting started, step-by-step

36 0x583 SDO Upload Response 0x03 (3) fragmented, size = 31 bytes
 37 0x603 SDO Upload Segment Req 0x03 (3) toggle = 0
 38 0x583 SDO Upload Response 0x03 (3) toggle = 0, C A N o p e n 43 41 4E 6F 70 65 6E

39 0x603 SDO Upload Segment Req 0x03 (3) toggle = 1
 40 0x583 SDO Upload Response 0x03 (3) toggle = 1, L i b N X P S 4C 69 62 4E 58 50 53

41 0x603 SDO Upload Segment Req 0x03 (3) toggle = 0
 42 0x583 SDO Upload Response 0x03 (3) toggle = 0, D K C i A 4 44 4B 20 43 69 41 34

43 0x603 SDO Upload Segment Req 0x03 (3) toggle = 1
 44 0x583 SDO Upload Response 0x03 (3) toggle = 1, 0 1 E x a m 30 31 20 45 78 61 6D

45 0x603 SDO Upload Segment Req 0x03 (3) toggle = 0
 46 0x583 SDO Upload Response 0x03 (3) toggle = 0, last segment 70 6C 65

47 0x183 Default: PDO

Default: TPDO 1 of Node 0x03 (3) 04 03 00 00

48 0x203 Default: PDO

Default: RPDO 1 of Node 0x03 (3) 00 00 00 04

49 0x183 Default: PDO

Default: TPDO 1 of Node 0x03 (3) 05 03 00 04

50 0x203 Default: PDO

Default: RPDO 1 of Node 0x03 (3) 00 00 00 05

Line 1 to 4: On startup, the Manager (Node 1) and the Device (Node 3), transmit their bootup messages

and an emergency reset message (clears all potentially pending emergencies).

Line 6: Manager requests that all nodes reset (ensures that Manager sees also bootups of nodes potential-

ly already running).

Line 8: Manager requests, that node 3 remains in pre-operational mode, so that it can get scanned and

configured.

Line 10, 12, 15, 17, 19: Manager performs a configurable autoscan of node found, here node 3. All devices

found get configured with a heartbeat producer and consumer time (listening to heartbeat of Manager)

and device information is read. In all cases node 3 sends the appropriate SDO response as a confirmation

that the service completed.

Line 21: Manager requests, that node 3 goes into operational mode and starts handling PDOs.

Line 22 and next: Both devices start transmitting PDOs. RPDOs are generated by the Manager and con-

sumed by node 3.

Line 33 and following: Manager initiates a segmented SDO transfer, reading the manufacturer device

name, here 31 bytes transferred in multiple segments.

The expected debug console output of the Manager is shown below:

Starting CANopen Library example for NXP LPC54xxx on CAN 1

Provided by EmSA - www.em-sa.com/nxp

CANopen Library Event - Reset Communication, bitrate 500kbps, node id 1

CANopen Library Event - NMT Change: 0x00 boot

CANopen Library Event - NMT Change: 0x05 operational

CANopen Manager Event - Node Status Change: 3, 0x00 booted

CANopen Manager Event - Node Status Change: 3, 0x81 emergency over / reset

CANopen Manager Event - Node Status Change: 3, 0xA0 scan complete

 [1000,00]:00000191 [1018,01]:AF0002DC [1018,02]:C0DE0010

CANopen Manager Event - Node Status Change: 3, 0x05 operational

CANopen Manager Event - Node Status Change: 3, 0x90 heartbeat monitoring active

CANopen Manager Client SDO Complete: node 3

 [1008,00]:CANopenLibNXPSDK CiA401 Example

 [6411,01]:0x0200

14 EmSA’s CANopen Libraries for NXP SDK

 [6411,01]:0x0300

 [6411,01]:0x0400

 [6411,01]:0x0500

Numbers in “[]” indicate an Object Dictionary (16bit Index and 8 bit Subindex, both hexadecimal). Here

selected data received from the CANopen node 3.

The expected debug console output of the Device is shown below:

Starting CANopen Library example for NXP LPC54xxx on CAN 1

Provided by EmSA - www.em-sa.com/nxp

CANopen Library Event - Reset Communication, bitrate 500kbps, node id 3

CANopen Library Event - NMT Change: 0x05 operational

 [6200h,01h]:0x00 [6200h,02h]:0x00 [6200h,03h]:0x00 [6200h,04h]:0x00

 [6411h,01h]:0x0000 [6411h,02h]:0x0000

 [6200h,04h]:0x04

 [6411h,01h]:0x3703

 [6411h,01h]:0x3800

 [6200h,04h]:0x05

 [6411h,01h]:0x3801

 [6200h,04h]:0x06

 [6200h,04h]:0x07

Numbers in “[]” indicate an Object Dictionary (16bit Index and 8 bit Subindex, both hexadecimal). Here

data received from the Manager.

3.5 CANopen Device: generic I/O Example Application
The example code supplied implements a minimal CiA 401-compliant I/O device with 4 digital input bytes,

4 digital output bytes, 2 analog 16bit inputs and 2 analog 16bit outputs. The process data is transmitted

using 2 Transmit PDOs and 2 Receive PDOs.

The default bitrate is 500kbps, the default node ID is 3 and the default heartbeat time is 1s.

All process data exchanged is handled in function USER_Process(). Triggering of the TPDOs is determined

by a combination of change of state (COS) detection and event and inhibit timers. See the EDS or CANo-

pen Architect configuration for detailed PDO configuration.

Receive PDO 1 data (received from Manager, CAN ID 203h) is copied to:

 [6200h,1] Digital out byte 1

 [6200h,2] Digital out byte 2

 [6200h,3] Digital out byte 3

 [6200h,4] Digital out byte 4

Receive PDO 2 data (received from Manager, CAN ID 303h) is copied to:

 [6411h,1] Analog out word16 1

 [6411h,2] Analog out word16 2

Transmit PDO 1 data with CAN ID 183h contains:

15 Getting started, step-by-step

 [6000h,1] Digital in byte 1: counter of digital data received

 [6000h,2] Digital in byte 2: counter of analog data received

 [6000h,3] Digital in byte 3: copy/echo of [6200h,3] Digital out byte 3

 [6000h,4] Digital in byte 4: copy/echo of [6200h,4] Digital out byte 4

Transmit PDO 2 data with CAN ID 283h contains:

 [6401h,1] Analog out word16 1: timer with hi byte seconds and lo byte quarter seconds

 [6401h,2] Analog out word16 2: copy/echo of [6411h,2] Analog out word16 2

A Manager can also use additional SDO services to read/write process data. The example manager appli-

cation cyclically reads [6000h,3] to demonstrate SDO usage.

3.6 CANopen Manager: Control Example Application
The example code supplied implements a minimal Manager. For PDO handling the same matching of the

device is used.

The default bitrate is 500kbps, the default node ID is 1 and the default heartbeat time is 333ms.

All process data exchanged via PDO is handled in function USER_ProcessApp(). Triggering of the TPDOs is

determined by a combination of change of state (COS) detection and event and inhibit timers. See the EDS

or CANopen Architect configuration for detailed PDO configuration.

When the first CiA 401 compatible device is found, the Manager modifies its own PDO CAN ID to match

those of the device. It consumes the device’s TPDOs and produces the device’s RPDOs.

Transmit PDO 1 data contains:

 [6000h,1] Digital in byte 1: 0

 [6000h,2] Digital in byte 2: 0

 [6000h,3] Digital in byte 3: copy/echo of [6200h,1] Digital out byte 1

 [6000h,4] Digital in byte 4: copy/echo of [6200h,2] Digital out byte 2

Transmit PDO 2 data contains:

 [6401h,1] Analog out word16 1: timer with hi byte seconds and lo byte quarter seconds

 [6401h,2] Analog out word16 2: copy/echo of [6411h,2] Analog out word16 1

16 EmSA’s CANopen Libraries for NXP SDK

 4 Using the CANopen Libraries

4.1 File and Directory Structure
The directory structure used by the CANopen Libraries and examples separates the files used into major

groups. It is recommended to maintain this structure and to adopt it for the grouping of source files in the

project settings and layouts as supported by most compiler systems.

4.1.1 Common Shared Directory

Path: ./MCO

This directory contains all header files required for using the CANopen libraries. In order to allow easy

future updates/upgrades and to ensure that the code remains CANopen conformant, these files should

not be modified by the end user.

4.1.2 Library Directory

Path: ./Lib

This directory contains the CANopen Library used.

4.1.3 Configuration Directory

Path: ./Example-Config

This directory contains the files and modules configuring the CANopen device implemented. These files

need to be modified or generated for each application.

File / Module Content

procimg.h Definition of process image access macros

nodecfg.h CANopen functionality configuration

user_cbdata.c Application call-back functions

user_od.c Tables with Object Dictionary
(pulls-in auto-generated entries from CANopen Architect)

Path: ./Example-Config/EDS/

This directory contains the application’s EDS and DCF files (Electronic Data Sheet and Device Configuration

File) as well as auto-generated source code files generated by the CANopen Editor “CANopen Architect”.

The auto-generated files should not be modified as any recreation of the files by CANopen Architect would

overwrite any local modifications.

4.1.4 Application Directory

Path: ./Example-Source

File / Module Content

Application.caxe CANopen Architect project file

Application.eds/.dcf Application’s Electronic Data Sheet or Device Configuration File.

Application.pdf Auto-generated documentation generated by “CANopen Architect”

entriesandreplies.h
stackinit.h
pimg.h

Auto-generated configuration files generated by “CANopen Architect”

17 Using the CANopen Libraries

This directory contains the files and modules implementing the CANopen application. These files need to

be modified or generated for each application.

4.1.5 Project Directory

Path: ./Example/[MCU_used]

This directory contains the project settings depending on MCU and target board used.

4.2 CANopen Functional Overview
The CANopen libraries can be used to implement CANopen and CANopen FD Slave nodes in accordance

with almost any Device or Application profile available today.

The figure above illustrates the operation blocks of the CANopen examples. The object dictionary and

process image layout is configured using the CANopen Architect utility, which generates the .h configura-

tion files needed by application example and library. The example application has access to the process

image through the API of the CANopen library which also has direct access to it when transmitting or re-

ceiving data on the CANopen network side.

4.2.1 Node ID

Every CANopen device on a CANopen network must have a unique node ID number. This is either assigned

directly with the auto-generated configuration or it must be passed as a parameter when initializing the

CANopen library.

The commercially available extended libraries support LSS (Layer Setting Services) where devices without

a node ID can be detected through the CANopen network. An LSS Master can then assign these unconfig-

ured devices a node ID to use.

4.2.2 Process Image Usage

All data communicated via CANopen (FD) is organized in a process image, an array of bytes. Data is re-

ferred to by an offset into the process image. These offsets can be auto-generated by the CANopen con-

figuration tool CANopen Architect (file pimg.h).

18 EmSA’s CANopen Libraries for NXP SDK

The application program may access parameters in the process image at any time using the macros

PI_READ() and PI_WRITE().

4.2.3 Object Dictionary and SDO/USDO Server

The CANopen libraries implement an object dictionary with one or multiple SDO/USDO servers. Depending

on the size of an OD entry, expedited or segmented SDO/USDO transfers are used. Expedited transfers are

used for a size of up to 4 (CANopen) resp. 48 (CANopen FD) bytes. Otherwise segmented transfers are

used.

Using the SDO/USDO server, SDO/USDO clients can send read/write requests to the Object Dictionary.

4.2.4 Heartbeat Producer

The CANopen libraries implement the heartbeat producer method.

As recommended by the CiA and other CANopen experts, the CANopen libraries implement the newer

heartbeat method instead of the older node guarding method.

4.2.5 PDO Parameters

With these CANopen libraries, PDO mapping parameters (data mapped into the PDO) are static (hard-

coded by configuration files created with CANopen Architect). The PDO communication parameters are

dynamic (can be changed during operation). PDO communication parameters include CAN ID used and

trigger options like change-of-state with an inhibit time, event timer (periodical) and SYNC.

4.2.6 Number of PDOs

The maximum number of PDOs supported by this library are 4 TPDOs and 4 RPDOs (16 TPDOS and 16

RPDOS for Manager). Extended versions of the library supporting all 512 PDOs are commercially available,

see www.em-sa.com/nxp.

4.2.7 Emergency Producer and Emergency messages

The CANopen libraries support the production of emergency messages. Emergencies can be triggered by

the application as well as by the CANopen stack, for example if a PDO received has a different length than

expected.

Upon startup (right after boot up message) an Emergency clear message (code 0000h) is transmitted.

Further, the default implementation of the user function MCOUSER_FatalError() generates an Emergency

with the error code in the custom area of the Emergency message.

If an illegal NMT command (CAN message ID zero) is received, an Emergency with code 8200h is produced.

The custom error area shows the illegal command byte received.

If a PDO received has a different length as expected, an Emergency with code 8210h is produced. The

custom error area included the PDO number (lo byte and hi byte), the expected length and the length of

the received PDO.

If Heartbeat consumption is enabled and a loss of a heartbeat is detected, then an Emergency with code

8130h is produced. The custom area shows the node ID number of the node whose heartbeat was lost.

http://www.em-sa.com/nxp

19 Using the CANopen Libraries

4.2.8 Emergency Consumer

Only available in the Manager version of the library. The call-back function MGRCB_NodeStatusChanged()

informs the application about emergencies received.

4.2.9 Heartbeat Consumer

This release of the CANopen libraries provide three heartbeat consumer channels for devices and 32 for

Managers. The application is informed once a heartbeat monitored is lost. The channels can be configured

both through the CANopen network as well as by the application.

4.2.10 Store Parameters

The CANopen library implements the store parameters functionality. This means that the current configu-

ration of the CANopen device can be saved to non-volatile memory and will automatically be used after

power-up.

Requires adaptation of the nvol_xxxx.c driver to store data in non-volatile memory.

4.2.11 Layer Setting Services

Not available in this release of the CANopen library.

20 EmSA’s CANopen Libraries for NXP SDK

 5 Application Interface
Both shared data memory and function calls are used to implement an interface between CANopen and

the application program. A process image (array of bytes) is used as shared memory that can be accessed

from both the CANopen library as well as from the application program. The process image contains all

process data variables that are communicated via CANopen. Access functions are provided to allow the

application program to read or write data from or to the process image.

5.1 The Process Image
In order to offer a generic method for addressing and exchanging the data communicated via CANopen,

the data is organized into a process image which is implemented as an array of bytes. The length of the

process image in bytes is defined by PROCIMG_SIZE in file procimg.h and must be in the range of 1 to

FFFEh (values 0 and FFFFh are reserved).

A single variable of the process image can be addressed by specifying an offset and a length. The offset

specifies where in the process image the first byte of a variable is stored and the length specifies how

many bytes are used to store the variable. The offset may have a value from 0 to FFFEh. Using an offset of

FFFFh indicates that the offset is invalid or unused.

If numeric values are stored in multiple byte variables, then the default byte order is CANopen compati-

ble: Little Endian – the lower bytes are stored at the lower offset.

5.1.1 Configuration of the Process Image

The process image configuration is automatically generated by CANopen Architect. The default file name

for the file containing the process image variable definitions generated by CANopen Architect is pimg.h.

5.1.2 Accessing the Process Image

Only use the provided macros to access data in the process image. See chapter 5.3.7 Process Image Access

Macros: The PI_READ macro and below for details.

5.1.3 Data alignment

In general, CANopen Architect can be configured to align the data in the process image. This ensures that

32bit values are stored at an address dividable by 4.

Unfortunately, that is not always possible. PDO mapped data is stored as one block. If data is unaligned in

a PDO definition (as used in some CiA documents), then it will be unaligned in the process image, too. The

definition of the PI_READ() and PI_WRITE() macros must be such, that also unaligned data is read proper-

ly.

5.1.4 Data Integrity of the Process Image in an RTOS Environment

The process image is accessed by both the application and the CANopen library (both with SDO/USDO and

PDO accesses). Typically, locks are required to ensure data integrity.

To ease the implementation of such locks, all process image accesses need to be made using the macros

PI_READ(), PI_WRITE() and PI_COMP(). The read and write macros need to be enhanced with custom code

to create and release a lock before and after accessing the process image. These are defined in file

procimg.h.

21 Application Interface

Note: PI_COMP() also executes an read access, however it is only used to detect a data change and there-

fore does not need to be protected.

5.2 Object Dictionary Configuration
The Object Dictionary configuration is automatically generated by CANopen Architect. The default file

name for the file containing the process image variable definitions is entriesandreplies.h.

The file in which the OD is created is called user_od.c (User Object Dictionary file).

5.3 CANopen API Functions and Macros
This section lists all the functions that can be called by the application program.

5.3.1 The MCO_Init function

The MCO_Init function (re-)initializes the CANopen protocol stack. It needs to be called during system

initialization. It may also be called to re-initialize the CANopen stack, for example to force a reset of the

CANopen communication task(s).

Declaration

void MCO_Init (

 UNSIGNED16 Baudrate, // CAN FD arbitration bitrate in kbps

 UNSIGNED16 BRSBaudRate,// CAN FD data bitrate in kbps, FD only

 UNSIGNED8 Node_ID, // CANopen node ID (1-127)

 UNSIGNED16 Heartbeat // Heartbeat time in ms

);

Passed

Baudrate selects the desired CAN bit rate to be used. The following values are typically used for CANo-

pen:

1 use default or predefined bit rate
10 use 10 kbps
20 use 20 kbps
50 use 50 kbps
125 use 125 kbps
250 use 250 kbps
500 use 500 kbps
800 use 800 kbps
1000 use 1,000 kbps

Node_ID is the CANopen node ID to be used by this CANopen node. The allowed value range is 0 to 127.

If 0 is selected, Micro CANopen Plus will use the default or preconfigured node ID.

Heartbeat is the heartbeat producer time in milliseconds. If set to zero, Micro CANopen Plus will try to

use a default or predefined value.

Returned

Nothing.

5.3.2 The MCO_InitxPDOx functions

These functions initialize the PDOs used. PDO initialization is part of the auto-generated code from CANo-

pen Architect in file stackinit.h.

22 EmSA’s CANopen Libraries for NXP SDK

5.3.3 The MCO_ProcessStack function

This function must be called periodically to keep the CANopen stack operating. With each call it is checked

if the CAN receive queue contains a message that needs to be processed. Depending on configuration it is

also checked if timers expired or process data changed. This is typically called from the main while(1) loop.

For best operation this should be called at least once per millisecond. If called less often multiple calls

should be executed (see return value below).

Declaration

UNSIGNED8 MCO_ProcessStack (

 void

);

Passed

Nothing.

Returned

The return value is TRUE, if something was processed and FALSE if there was nothing to do. If called less

frequent, like every few milliseconds this function should be called repeatedly until the return value is

FALSE.

Example

 while (MCO_ProcessStack() == TRUE);

5.3.4 The MCO_TriggerTPDO function

This function may be called by the application when a TPDO should be transmitted. Can be called after a

write to the process image to avoid lengthy auto-detection of a COS (Change Of State).

Declaration

void MCO_TriggerTPDO (

 UNSIGNED16 TPDONr // TPDO number to transmit

);

Passed

The parameter TPDONr defines the TPDO number to be triggered. Must be in range from 1 to

NR_OF_TPDOS

Returned

Nothing.

5.3.5 The MCOP_InitHBConsumer function

When heartbeat consumer functionality is enabled, this function can be used to manually re-initialize a

heartbeat consumer.

NOTE that under regular CANopen configuration the heartbeat consumers are initialized through configu-

ration – setting the heartbeat consumer times using a CANopen configuration tool.

Declaration

void MCOP_InitHBConsumer (

 UNSIGNED8 consumer_channel, // HB Consumer channel

 UNSIGNED8 node_id, // Node ID to monitor

 UNSIGNED16 hb_time // Timeout to use (in ms)

);

23 Application Interface

Passed

consumer_channel is the number of the heartbeat consumer channel that gets initialized with this

call.

node_id is the CANopen node ID of the node monitored.

hb_time is the heartbeat timeout used in milliseconds. As a rule over thumb this should be a multiple of

what the heartbeat producer timer is.

Returned

Nothing.

5.3.6 The MCOP_PushEMCY and MCOP_PushEMCYFD functions

When Emergency usage is enabled (#define USE_EMCY) functionality is enabled, a CANopen Emergency

message can be transmitted with these function calls. The legacy PushEMCY can still be used, it calls the

PushEMCYFD version with default parameters.

Declaration

UNSIGNED8 MCOP_PushEMCYFD

 (

 UNSIGNED8 logic,// logical device number (0 for unknown)

 UNSIGNED16 cia_doc, // 16 bit CiA spec number referred

 UNSIGNED16 emcy_code, // 16 bit error code

 UNSIGNED8 em_1, // 5 byte manufacturer

 UNSIGNED8 em_2, // specific error code

 UNSIGNED8 em_3,

 UNSIGNED8 em_4,

 UNSIGNED8 em_5,

 UNSIGNED8 status, // error priority, class, state

 TIME_OF_DAY time // time stamp, if available

);

Passed

The logical device number causing the emergency.

The CiA document number defining the emergency code.

The 16-bit emergency error code as specified by the CANopen standards.

Up to five bytes of manufacturer specific emergency / error information.

Emergency status information as defined in CiA 1301.

Timestamp, if available.

Returned

True if the message was successfully added to the transmit queue.

Declaration

UNSIGNED8 MCOP_PushEMCY

 (

 UNSIGNED16 emcy_code, // 16 bit error code

 UNSIGNED8 em_1, // 5 byte manufacturer

 UNSIGNED8 em_2, // specific error code

 UNSIGNED8 em_3,

 UNSIGNED8 em_4,

 UNSIGNED8 em_5

);

24 EmSA’s CANopen Libraries for NXP SDK

Passed

The 16-bit emergency error code as specified by the CANopen standards.

Up to five bytes of manufacturer specific emergency / error information.

Returned

True if the message was successfully added to the transmit queue.

5.3.7 Process Image Access Macros: The PI_READ macro

This macro is defined in procimg.h and used to execute read accesses from the process image. This can be

customized or provided as a function if the application wants to have a direct call-back for any read access

made from the process image.

Declaration

PI_READ(level,offset,pdst,len)

Passed

level indicates a priority level for the access, is set to PIACC_APP, PIACC_PDO or PIACC_SDO depending

on if the access is made from the application, PDO processing or SDO/USDO processing.

offset is the offset into the process image to the location from which the read is executed.

pdst is a memory pointer to the destination to which data is copied.

len is the length of the data to be copied in bytes.

Returned

Nothing or length of data copied.

5.3.8 Process Image Access Macros: The PI_WRITE macro

This macro is defined in procimg.h and used to execute write accesses to the process image. This can be

customized or provided as a function if the application wants to have a direct call-back for any write ac-

cess made to the process image.

Declaration

PI_WRITE(level,offset,psrc,len)

Passed

level indicates a priority level for the access, is set to PIACC_APP, PIACC_PDO or PIACC_SDO depending

on if the access is made from the application, PDO processing or SDO/USDO processing.

offset is the offset into the process image to the location to which the write is executed.

psrc is a memory pointer to the source from which data is copied.

len is the length of the data to be copied in bytes.

Returned

Nothing or length of data copied.

25 Application Interface

5.3.9 Process Image Access Macros: The PI_COMP macro

This macro is defined in procimg.h and used to compare data with data in the process image. This can be

customized or provided as a function if the application wants to have a direct call-back for any compare

access made to the process image.

Declaration

PI_COMP(level,offset,psrc,len)

Passed

level indicates a priority level for the access, is set to PIACC_APP, PIACC_PDO or PIACC_SDO depending

on if the access is made from the application, PDO processing or SDO/USDO processing.

offset is the offset into the process image to the location that is to be compared.

psrc is a memory pointer to the data that is to be compared.

len is the length of the data to be compared in bytes.

Returned

0 if the data is identical and unequal 0 otherwise.

5.3.10 Default Process Image Access Macros

The code is delivered with default macros that use plain calls to memcpy resp. memcmp from the ANSI-C

string library:

#define PI_READ(level,offset,pdst,len) memcpy(pdst,&(gProcImg[offset]),len)

#define PI_WRITE(level,offset,psrc,len) memcpy(&(gProcImg[offset]),psrc,len)

#define PI_COMP(level,offset,psrc,len) memcmp(&(gProcImg[offset]),psrc,len)

In environments where the following is true, these will work fine:

 No RTOS is used

 The process image is not accessed from within interrupt service routines

5.3.11 Macros for PDO process image access

For all PDO-related accesses, Micro CANopen Plus uses dedicated macros:

PDO_TXCOPY(TPDO,dat)

Copy from process image to TPDO CAN message buffer

PDO_RXCOPY(TPDO,dat)

Copy from RPDO CAN message buffer to process image

PDO_TXCOMP(TPDO,dat)

Compare TPDO CAN message buffer with what is in the process image (for change-of-state detection)

These macros are defined using PI_READ, PI_WRITE and PI_COMP general access macros with PIACC_PDO

as the first parameter for the access level.

5.4 CANopen API Call-Back Functions
This section lists the call-back functions that can be called by the CANopen protocol stack. They indicate

important CANopen events to the application.

26 EmSA’s CANopen Libraries for NXP SDK

5.4.1 The MCOUSER_ResetCommunication function

This function is called to completely re-initialize the CANopen communication. This includes re-

initialization of the CAN interface. This function is called upon initialization but also when the CANopen

node received the NMT Master command to soft-reset itself.

Declaration

void MCOUSER_ResetCommunication (

 void

);

Passed

Nothing.

Returned

Nothing.

5.4.2 The MCOUSER_ResetApplication function

This function is called when the CANopen node received the command from the NMT Master to hard-

reset itself. Both the CANopen communication as well as the application is expected to fully reset. This is

typically implemented using a watchdog reset.

Declaration

void MCOUSER_ResetApplication (

 void

);

Passed

Nothing.

Returned

Nothing.

5.4.3 The MCOUSER_GetSerial function

This function is called before read accesses to the Object Dictionary entry [1018h,0] – Serial Number. It

can be used by the application to retrieve the serial number, for example from non-volatile memory.

Declaration

UNSIGNED32 MCOUSER_GetSerial (

 void

);

Passed

Nothing.

Returned

The 32-bit serial number of the device.

27 Application Interface

5.4.4 The MCOUSER_NMTChange function

This Micro CANopen Plus function only exists if the compiler directive USECB_NMTCHANGE is defined. It is

then called whenever the CANopen protocol stack changes the NMT Slave state – typically this happens

after receiving the NMT Master Message.

Declaration

void MCOUSER_NMTChange (

 UNSIGNED8 NMTState

);

Passed

The value for NMTSTATE indicates the current NMT Slave State. It can be one of the following values:

NMTSTATE_BOOT (0), NMTSTATE_STOP (4), NMTSTATE_OP (5) or NMTSTATE_PREOP (127).

00h Initializing (sent after receiving the ‘I’ command)
04h CANopen NMT state “stopped” entered
05h CANopen NMT state “operational” entered
7Fh CANopen NMT state “pre-operational” entered

Returned

Nothing.

5.4.5 The MCOUSER_FatalError function

This indication signals the application that the CANopen stack ran into a fatal error situation and needs to

be reset or re-initialized to start operation again.

Declaration

void MCOUSER_FatalError (

 UNSIGNED16 ErrCode // the error code

);

Passed

The ErrCode is an internal 16-bit error code. As a general rule, error codes below 8000h indicate a warn-

ing and the stack CANopen could still continue operation. However, an error code of 8000h or higher indi-

cates a fatal error requiring re-initialization or a reset of the system.

Returned

Nothing.

5.4.6 The MCOUSER_ODData function

This Micro CANopen Plus function is only available when the compiler directive USECB_ODDATARECEIVED

is set to one. The function signals the receipt of process data stored into the process image, no matter if it

came in by PDO or SDO/USDO transfer.

Declaration

void MCOUSER_ODData (

 UNSIGNED8 client_nid, // node ID from where data arrived (0 if unknown)

 UNSIGNED16 idx, // Index

 UNSIGNED8 subidx, // Subindex

 UNSIGNED8 MEM_PROC *pDat, // pointer to data

 UNSIGNED16 len // length of data

);

28 EmSA’s CANopen Libraries for NXP SDK

Passed

The parameters passed include the requesting client’s node ID, if known (only if a USDO access triggered

this), Index and Subindex of the data received into the Object Dictionary as well as a pointer to the data

and the length of the data in bytes.

Returned

Nothing.

5.4.7 The MCOUSER_SYNCReceived function

This Micro CANopen Plus function is only available when the compiler directive USECB_SYNCRECEIVE is

defined. The function signals the receipt of the CANopen SYNC message. Synchronous TPDO data trans-

mission will be triggered and synchronous RPDO will be received after execution of this call-back function.

Declaration

void MCOUSER_SYNCReceived (

 void

);

Passed

Nothing.

Returned

Nothing.

5.5 Manager API
This section lists all the functions that can be called by the application program.

5.5.1 The MGR_ProcessMgr function
This function must be called periodically to keep the Manager operating. With each call it is checked if the

CAN receive queue contains a message for the Manager that needs to be processed. Depending on con-

figuration it is also checked if timers expired (like USDO response timeouts). This is typically called from

the main while(1) loop. If called less often multiple calls should be executed (see return value below).

Declaration

UNSIGNED8 MGR_ProcessMgr (

 void

);

Passed

Nothing.

Returned

The return value is TRUE, if something was processed and FALSE if there was nothing to do. If called less

frequent, like every few milliseconds this function should be called repeatedly until the return value is

FALSE.

 while (MGR_ProcessMgr() == TRUE);

5.5.2 The MGR_TransmitNMT function
This function may be called by the application to transmit the Network Management Master Message.

29 Application Interface

Declaration

UNSIGNED8 MGR_TransmitNMT (

 UNSIGNED8 nmt_cmd, // NMT command

 UNSIGNED8 node_id // Node ID, or zero for all nodes

);

Passed

The parameter nmt_cmd defines the NMT command transmitted. The following commands are availa-

ble:

NMTMSG_PREOP Pre-operational

NMTMSG_OP Operational

NMTMSG_STOP Stop

NMTMSG_RESETCOM Reset Communication

NMTMSG_RESETAPP Reset Application

Returned

True, if the message was successfully added to the CAN transmit queue.

5.6 Manager Multi-Scan API
The manager can use an SDO or USDO client to perform multiple sequential reads from a node and collect

the results in a table. The call-back MGRCB_NodeStatusChanged informs the application when scanning is

completed.

5.6.1 The MGRSCAN_Init function
This function initializes the auto scan feature of the manager.

Declaration

void MGRSCAN_Init (

 UNSIGNED8 sdo_clnt, // SDO client number to use

 UNSIGNED8 node_id, // Node ID of node to read data from

 UNSIGNED8 *pScanList, // list with OD entries to be read

 UNSIGNED32 *pScanData,// Pointer to destination array

 UNSIGNED16 Delay // Delay in ms between read requests

);

Passed

The parameter sdo_clnt defines the (U)SDO channel number used, this must be in between one and

NR_OF_SDO_CLIENTS.

The node to read from is selected by node_id.

The parameter pScanList must point to a table with 32bit entries:

 Index(16bit), Subindex(8bit), Length(8bit)

Last entry must be 0xFFFFFFFF

The destination buffer pScanData must be big enough to hold all entries back to back.

The parameter Delay specifies a timeout in milliseconds used between transfers to avoid producing too

much of a busload.

Returned

Nothing.

5.6.2 The MGRSCAN_GetStatus function
This function can be used to quickly check if the auto scan is still running or not.

30 EmSA’s CANopen Libraries for NXP SDK

Declaration

UNSIGNED8 MGRSCAN_GetStatus (

 UNSIGNED8 node_id // Node ID of node which is scanned

);

Passed

The node id of the node which is currently scanned.

Returned

TRUE if scan is still in progress, else FALSE.

5.7 Manager API Call-Back Functions
This section lists all call-back functions that can be called by the CANopen Manager. They indicate events

to the application.

5.7.1 The MGRCB_NodeStatusChanged function
This function is called when the status of any of the nodes on the network has changed. The changes re-

ported are:

NODESTATUS_BOOT Node booted
NODESTATUS_PREOPERATIONAL Node changed into pre-operational
NODESTATUS_OPERATIONAL Node changed into operational mode
NODESTATUS_STOPPED Node changed into stopped mode
NODESTATUS_HBACTIVE Heartbeatmonitoring is now active
NODESTATUS_HBLOST Heartbeat was lost
NODESTATUS_SCANCOMPLETE Auto-scan of node completed
NODESTATUS_EMCY_OVER Emergency clear
NODESTATUS_EMCY_NEW New emergency occurred

For the last three more detailed information can be found in the nodelist structure.

Declaration

void MGRCB_NodeStatusChanged (

 UNSIGNED8 node_id,

 UNSIGNED8 status

);

Passed

The node ID number of the node whose status changed and the status change reported.

Returned

Nothing.

31 Application Interface

5.8 SDO Client API
SDO client services allow CANopen devices to actively send SDO requests to other devices. This allows

access to the Object Dictionary of all nodes connected to a network. Functions provided allow reading or

writing an entire list of OD entries. SDO client services may in general also be used by CANopen slave de-

vices. However, most common usage is in Managers.

5.8.1 The SDOCLNT_ResetChannels function
This function resets all SDO Client channels

Declaration

void SDOCLNT_ResetChannels (

);

Passed

Nothing.

Returns

Nothing.

5.8.2 The SDOCLNT_Init function
This function initializes an SDO client as needed for sending SDO requests to CANopen devices.

Declaration

SDOCLIENT *SDOCLNT_InitSDOClient (

 UNSIGNED8 channel, // SDO channel number

 UNSIGNED32 canid_request, // CAN message ID SDO request

 UNSIGNED32 canid_response, // CAN message ID SDO response

 UNSIGNED8 *p_buf, // data buffer for data exchanged

 UNSIGNED32 buf_size // max length of data buffer

);

Passed

The parameter channel defines the SDO channel number used, the number of channels available is

determined by NR_OF_SDO_CLIENTS.

The CAN IDs used for the transmitted request and the expected response are determined by the parame-

ters canid_request and canid_response.

The parameters p_buf and buf_size define the data buffer used to hold data transmitted or re-

ceived.

Returned

This function returns a pointer to data structure of type SDOCLIENT. This data structure holds all in-

formation for this SDO channel and the pointer is needed for referencing this SDO channel when using the

read and write functions.

If the pointer returned is zero, then initialization failed.

5.8.3 The SDOCLNT_Read function
This function starts an SDO read process. The function is non-blocking and returns before the response is

received. Once a response is received or a timeout occurs, the call back function MGRCB_SDOComplete is

called. The data received will be made available in the buffer specified during initialization of the client.

Declaration

UNSIGNED8 SDOCLNT_SDOClientRead (

 SDOCLIENT *p_client, // Pointer to SDO client structure

 UNSIGNED16 index, // Object Dictionary Index to read

32 EmSA’s CANopen Libraries for NXP SDK

 UNSIGNED8 subindex // Object Dictionary Subindex to read

);

Passed

The parameter p_client is a pointer to the SDO client structure returned during initialization..

The parameters index and subindex define the object dictionary entry to be read.

Returned

True, if the client request was queued to the CAN transmit queue.

5.8.4 The SDOCLNT_ReadXtd function
This function starts an SDO read process with extended parameters. In addition to SDOCLNT_READ() a

receive buffer and an individual timeout can be specified.

Declaration

UNSIGNED8 SDOCLNT_ReadXtd (

 SDOCLIENT *p_client, // Pointer to initialized SDO client

 UNSIGNED16 index, // Object Dictionary Index to read

 UNSIGNED8 subindex, // Object Dictionary Subindex to read

 UNSIGNED8 *pDest, // Pointer to data destination

 UNSIGNED32 len, // Maximum length of data destination

 UNSIGNED16 timeout // Timeout for this transfer in ms

);

Passed

The parameter p_client is a pointer to the SDO client structure returned during initialization..

The parameters index and subindex define the object dictionary entry to be read.

The parameters pDest and len define the destination buffer for the data read.

The parameter timeout specifies the timeout in milliseconds.

Returned

True, if the client request was queued to the CAN transmit queue.

5.8.5 The SDOCLNT_Write function
This function starts an SDO write process. The function is non-blocking and returns before the response is

received. Once a response is received or a timeout occurs, the call back function MGRCB_SDOComplete is

called. The data transmitted must already be present in the buffer specified during initialization of the

client.

Declaration

UNSIGNED8 MGR_SDOClientWrite (

 SDOCLIENT *p_client, // Pointer to SDO client structure

 UNSIGNED16 index, // Object Dictionary Index to write

 UNSIGNED8 subindex // Object Dictionary Subindex to write

);

Passed

The parameter p_client is a pointer to the SDO client structure returned during initialization..

The parameters index and subindex define the object dictionary entry to be written to.

Returned

True, if the client request was queued to the CAN transmit queue.

33 Application Interface

5.8.6 The SDOCLNT_WriteXtd function
This function starts an SDO write process with extended parameters. In additon to the regular call a source

buffer and a timeout can be specified.

Declaration

UNSIGNED8 SDOCLNT_WriteXtd (

 SDOCLIENT *p_client, // Pointer to initialized SDO client

 UNSIGNED16 index, // Object Dictionary Index to write

 UNSIGNED8 subindex, // Object Dictionary Subindex to write

 UNSIGNED8 *pSrc, // Pointer to data source

 UNSIGNED32 len, // Length of data

 UNSIGNED16 timeout // Timeout for this transfer in ms

);

Passed

The parameter p_client is a pointer to the SDO client structure returned during initialization..

The parameters index and subindex define the object dictionary entry to be written to.

The parameters pSrc and len define the source buffer for the data write.

The parameter timeout specifies the timeout in milliseconds.

Returned

True, if the client request was queued to the CAN transmit queue.

5.8.7 The SDOCLNT_GetStatus function
Returns the current status of an SDO client.

Declaration

UNSIGNED32 SDOCLNT_GetStatus (

 SDOCLIENT *p_client // Pointer to initialized SDO client

);

Passed

The parameter p_client is a pointer to an SDOCLIENT structure.

Returned

The status information for this SDO client.

SDOERR_FATAL Illegal pointer passed
SDOERR_OK Confirmation, last access was success
SDOERR_ABORT Abort received
SDOERR_TIMEOUT Request timed out
SDOERR_TOGGLE Toggle error
SDOERR_BUFSIZE Out of Memory
SDOERR_UNKNOWN No transfer possible
SDOERR_RUNNING SDO Transfer still running, not complete

5.8.8 The SDOCLNT_GetLastAbort function
Returns the last abort code of a SDO client.

Declaration

UNSIGNED32 SDOCLNT_GetLastAbort (

 SDOCLIENT *p_client // Pointer to initialized SDO client

);

Passed

The parameter p_client is a pointer to an SDOCLIENT structure.

34 EmSA’s CANopen Libraries for NXP SDK

Returns

The last SDO abort code. A value of 0xFFFFFFFF or zero indicates that no abort code is available.

5.8.9 The SDOCLNT_BlockUntilCompleted function
Waits until a SDO client transfer completed (received response, abort or timeout).

Declaration

UNSIGNED32 SDOCLNT_BlockUntilCompleted (

 SDOCLIENT *p_client // Pointer to initialized SDO client

);

Passed

The parameter p_client is a pointer to an SDOCLIENT structure.

Returned

SDO_ERR status code, same as SDOCLNT_GetStatus.

5.8.10 The SDOCLNT_ReadCycle function
This function executes an entire SDO read cycle including initialization of an SDO channel, sending the SDO

request and waiting for the response. As the function is blocking (waits until cycle completed) it should

only be used when an RTOS is used. During the wait loop the macro RTOS_SLEEP is used, this needs to be

defined to either a fixed timeout (like 1 to 5 milliseconds) or to a “wait until” the next CAN message was

received and placed into the manager’s CAN receive queue.

Declaration

UNSIGNED32 MGR_SDOClientReadCycle (

 UNSIGNED8 channel, // SDO chn number 1-NR_OF_SDO_CLIENTS

 UNSIGNED8 node_id, // CANopen node ID

 UNSIGNED16 index, // Object Dictionary Index to read

 UNSIGNED8 subindex, // Object Dictionary Subindex to read

 UNSIGNED8 *p_buf, // data buffer pointer for data rec.

 UNSIGNED32 buf_size // max length of data buffer

);

Passed

The parameter channel is the SDO channel number used for this transfer.

With the parameter node_id the CANopen slave node is selected to which the SDO read request is

send.

The parameters index and subindex define the object dictionary entry to be read.

The pointer p_buf and the size parameter buf_size define the data buffer into which the received

data is copied.

Returned

On success returns the number of bytes of received data, else zero.

5.8.11 The SDOCLNT_WriteCycle function
This function executes an entire SDO write cycle including initialization of an SDO channel, sending the

SDO request and waiting for the response. As the function is blocking (waits until cycle completed) it

should only be used when an RTOS is used. During the wait loop the macro RTOS_SLEEP is used, this needs

to be defined to either a fixed timeout (like 1 to 5 milliseconds) or to a “wait until” the next CAN message

was received and placed into the manager’s CAN receive queue.

Declaration

35 Application Interface

UNSIGNED32 MGR_SDOClientWriteCycle (

 UNSIGNED8 channel, // SDO chn number 1-NR_OF_SDO_CLIENTS

 UNSIGNED8 node_id, // CANopen node ID

 UNSIGNED16 index, // Object Dictionary Index to read

 UNSIGNED8 subindex, // Object Dictionary Subindex to read

 UNSIGNED8 *p_buf, // data buffer pointer for data rec.

 UNSIGNED32 buf_size // max length of data buffer

);

Passed

The parameter channel is the SDO channel number used for this transfer.

With the parameter node_id the CANopen slave node is selected to which the SDO write request is

send.

The parameters index and subindex define the object dictionary entry to be read.

The pointer p_buf and the size parameter buf_size define the data send to the specified Object

Dictionary entry. All bytes in the data buffer are send.

Returned

On success returns the number of bytes of data transferred, else zero.

5.8.12 The SDOCLNTCB_SDOComplete call-back function
This function is called when an initiated SDO transfer was completed or aborted. If called to indicate the

completion of a read request, then the data received is stored in the buffer specified during initialization

of the SDO channel.

Declaration

void SDOCLNTCB_SDOComplete (

 UNSIGNED8 channel, // SDO channel number

 UNSIGNED32 abort_code // status, error, abort code

);

Passed

The SDO channel number and the abort_code. The abort code is set to SDOERR_READOK or SDO-

ERR_WRITEOK to indicate that the transfer completed without errors.

Returned

Nothing.

36 EmSA’s CANopen Libraries for NXP SDK

 6 Appendix – Using Auto-Generated Sources
The CANopen EDS Editor “CANopen Architect” can generate source files directly usable by Micro CANopen

Plus. This chapter summarizes the steps that need to be taken to generate the files and integrate them to

Micro CANopen Plus based applications.

The application examples provided with Micro CANopen Plus have their EDS, DCF and auto-generated files

stored in the directory MCO_APPLICATIONNAME/EDS/

6.1 File Generation
When editing an EDS or DCF with CANopen Architect some extra care should be taken when defining the

access type for the Object Dictionary entry.

If the access type of an entry is CONST (constant), then CANopen Architect will not place the entry into the

process image but will try to locate it in the non-volatile code space area. This helps to conserve the lim-

ited space available for process image data.

As an example, the entries [1008h-100Ah,00h] should be specified as CONST, as these are constant, read-

only strings.

For entries using multiple subindexes, the first subindex entry (subindex 0) should also be marked as type

CONST. CANopen Architect then places these into the SDO Reply table and not into the process image.

To generate the source files from CANopen Architect, simply select the menu “File | Export C Sources

Files...”. It is recommended to use the default file names suggested when exporting the files.

6.2 File Integration
This section describes the information found in each of the generated files and how these files need to be

integrated into the application.

6.2.1 pimg.h

The file pimg.h contains the basic #define settings required by Micro CANopen Plus and all process image

offset and size definitions for variables stored in the process image.

This file needs to be included to all the application’s C source files that make accesses to data contained in

the process image.

6.2.2 stackinit.h

The file stackinit.h contains auto-generated calls to the functions MCO_InitRPDO and MCO_InitTPDO

which initialize the PDOs. The calls are provided as macro INITPDOS_CALLS.

The file also contains auto-generated calls to the functions MCO_InitHBConsumer to set up heartbeat

consumer channels. The calls are provided as macro INITHBCONSUMER_CALLS.

This file should be included to the C source file initializing the CANopen stack and making the call to

MCO_Init. This is typically the file user_xxx.c and the call to MCO_Init is made in MCOUS-

ER_ResetCommunication.

The recommended use is:

if (MCO_Init(can_bps,node_id,DEFAULT_HEARTBEAT))

{

 //Initialization of PDOs comes from EDS

 INITPDOS_CALLS

 INITHBCONSUMER_CALLS

37 Appendix – Using Auto-Generated Sources

}

Note: If the CANopen Manager Add-on is used, the heartbeat consumers must be initialized later, after

MGR_InitMgr() has been called to initialize the manager.

6.2.3 entriesandreplies.h

The file entriesandreplies.h contains all auto-generated Object Dictionary entries. These are provided as

macros and can directly be included into the data tables defined in the user_od.c file.

Use Example:

...

#include "EDS/entriesandreplies.h"

...

// Table with SDO Responses for read requests to OD

UNSIGNED8 MEM_CONST gSDOResponseTable[] = {

 // Include file generated by CANopen Architect

 SDOREPLY_ENTRIES

 // End-of-table marker

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF

};

// Table with Object Dictionary entries to process Data

OD_PROCESS_DATA_ENTRY MEM_CONST gODProcTable[] =

{

 ODENTRY_ENTRIES

 // End-of-table marker

 ODENTRY(0xFFFF,0xFF,0xFF,0xFFFF)

};

#ifdef USE_EXTENDED_SDO

// Table with generic entries to memory

OD_GENERIC_DATA_ENTRY MEM_CONST gODGenericTable[] =

{

 ODGENTRY_ENTRIES

 ODGENTRYP(0xFFFF,0xFF,0xFF,0xFFFF,0xFFFFF)

};

#endif // USE_EXTENDED_SDO

38 EmSA’s CANopen Libraries for NXP SDK

 7 Appendix – RTOS Integration
The most simplistic way to integrate CANopen with a Real-Time Operating System is to call

MCO_ProcessStack periodically, for example in the main while(1) loop or from a one millisecond timer

task.

7.1 RTOS Task: Receive and Tick
A more advanced configuration would not use MCO_ProcessStack at all, but the mayor two sub functions

MCO_ProcessStackRx and MCO_ProcessStackTick.

In an RTOS environment, the driver function MCOHW_PullMessage should be implemented waiting /

blocking and only return when a CAN message was received. The function MCO_ProcessStackRx can then

be executed repeatedly without further delay in its own task.

 for(;;) MCO_ProcessStackRx();

The function MCO_ProcessStackTick should be called with every RTOS timer tick. If a tick of 1ms or smaller

is used, a single call is sufficient. If the RTOS tick is greater than one, then MCO_ProcessStackTick should

be called repeatedly as long as the return value is TRUE.

 while (MCO_ProcessStackTick() == TRUE);

7.2 Process Image Integrity
In order to protect the process image from multiple accesses “at the same time”, the tasks accessing it

need to lock it as a single resource. To ease the implementation of such locks, all process image accesses

(also from the application) must be made using the macros PI_READ(), PI_WRITE() and PI_COMP().

These macros need to be customized to implement a mutex or single token semaphore lock before mak-

ing the access and a release /free of the mutex / semaphore after the access.

39 Appendix – CANopen Code Configuration

 8 Appendix – CANopen Code Configuration

With the CANopen library the following settings can not be changed.

This appendix is informational only.

The file nodecfg.h contains the #define settings that configure and enable specific CANopen code func-

tionality. The file settings in procimg.h specify the access to the process image. The settings in mcohw.h

define hardware related settings.

Source code configuration files can automatically be generated by the CANopen Architect.

8.1 Default Configuration of nodecfg.h

8.1.1 #define ENFORCE_DEFAULT_CONFIGURATION [0|1]

This setting enables the default configuration. This is the only fully tested configuration. All other configu-

ration options are provided for customer specific optimizations.

8.2 General Settings of nodecfg.h

8.2.1 #define USE_MCOP [1]

Legacy, must be set to 1.

8.2.2 #define CHECK_PARAMETERS [0|1]

If CHECK_PARAMETERS is enabled, additional code is generated that does plausibility checks upon entry of

code functions, such as checking if parameters are within the allowed range. If a parameter is out of

range, a call to MCOUSER_FatalError() is executed.

8.2.3 #define USE_LEDS [0|1]

Setting USE_LEDS to 1 enables two CANopen indicator lights as specified by the CiA document DR303.

Both a RUN and ERR light are supported. When using this option, additional defines must be used for the

physical switching of each light. These are LED_RUN_ON and LED_RUN_OFF for the RUN LED and

LED_ERR_ON and LED_ERR_OFF for the ERR LED.

8.3 PDO Settings of nodecfg.h

8.3.1 #define NR_OF_RPDOS [num]

This value defines the number of RPDOs (Receive Process Data Objects) implemented. The value range is

from 0 to 512.

8.3.2 #define NR_OF_TPDOS [num]

This value defines the number of TPDOs (Transmit Process Data Objects) implemented. The value range

may be from 0 to 512.

40 EmSA’s CANopen Libraries for NXP SDK

8.3.3 #define USE_EVENT_TIME [0|1]

If USE_EVENT_TIME is enabled, TPDO trigger events may include using the event timer (periodic transmis-

sion every X milliseconds).

8.3.4 #define USE_INHIBIT_TIME [0|1]

If USE_INHIBIT_TIME is enabled, TPDO trigger events may include COS (Change Of State) detection with

using the inhibit time.

NOTE:

Internally all inhibit times are calculated and used based on a resolution of one millisecond. However,

CANopen specifies the inhibit time with a resolution of 100 microseconds. To be CANopen compatible,

Micro CANopen Plus automatically does a divide or multiply by 10 when communicating the inhibit time

via SDO/USDO requests/responses.

8.3.5 #define USE_SYNC [0|1]

If USE_SYNC is enabled, the PDOs support synchronized transmission. To activate SYNC transmission, a

configuration tool needs to write the appropriate values to the transmission type field of the PDO com-

munication parameters.

8.3.6 #define USE_DYNAMIC_PDO_MAPPING [0|1]

If the optional (available as order option) USE_DYNAMIC_PDO_MAPPING is enabled, the PDOs support

dynamic mapping and multi-mapping. With dynamic mapping, the PDO mapping can be changed at run-

time. This allows changing which Object Dictionary entries are transmitted/received in a PDO. In addition,

multi-mapping is supported, which allows one Object Dictionary entry to be mapped to multiple PDOs.

8.4 NMT Service Settings of nodecfg.h

8.4.1 #define AUTOSTART [0|1]

When AUTOSTART is enabled, the CANopen device directly switches itself into the operational state after

power-on or reset without waiting for a CANopen NMT Master message with an operational command.

8.4.2 #define DEFAULT_HEARTBEAT [ms]

The Object Dictionary entry [1017h,00h] Heartbeat Producer Time is implemented as read-write. The

DEFAULT_HEARTBEAT defines the default heartbeat time used by Micro CANopen Plus and is specified in

milliseconds.

8.4.3 #define DYNAMIC_HEARTBEAT_CONSUMER [0|1], #define
NR_HB_CONSUMER [num]

When DYNAMIC_HEARTBEAT_CONSUMER is enabled, the Object Dictionary entries [1016h,xx] Heartbeat

Consumer are implemented as read-write and can be changed through configuration. Otherwise they are

hard-coded and cannot change during operation.

NR_HB_CONSUMER defines if the heartbeat consumer functionality is enabled. If this define is set to 0,

the heartbeat consumer functionality is disabled. If unequal zero, it defines the maximum number of

channels implemented, directly specifying the number of CANopen nodes that can be monitored.

41 Appendix – CANopen Code Configuration

8.4.4 #define USE_EMCY [0|1],
#define ERROR_FIELD_SIZE [num]

When USE_EMCY is enabled, Micro CANopen Plus supports the generation of emergency messages.

Emergencies are generated after each reset (“No Error” Emergency Message), upon critical failures (such

as receiving a PDO with an illegal length) and upon application specific emergency events. Emergencies

transmitted are copied into a error history, the predefined error field [1003h]. The size of the error history

(in number of errors saved) is defined using ERROR_FIELD_SIZE.

See also chapter 4.2.7 Emergency Producer and Emergency messages for an overview of auto-generated

emergency messages.

8.4.5 #define USE_NODE_GUARDING [0]

CANopen experts do not recommend the usage of node guarding. Instead, the newer heartbeat method

should be used. However, to be compliant with legacy devices, Micro CANopen Plus supports minimal

node guarding functionality that is enabled if this setting is enabled.

Must be zero for CANopen FD.

8.4.6 #define USE_STORE_PARAMETERS [0|1],
#define NVOL_STORE_START [num],
#define NVOL_STORE_SIZE [num]

When USE_STORE_PARAMETERS is enabled, the Store Parameters functionality of Micro CANopen Plus is

available. The module storpara.c is required for this functionality.

When USE_STORE_PARAMETERS is enabled, the define NVOL_STORE_START must be set to the first usa-

ble address in the non-volatile memory. The default is zero. The application could use a value of greater

than zero to reserve/protect a memory area in the non-volatile memory from accesses by the store pa-

rameters functionality. The functions of the store parameters module will not access non-volatile memory

outside the window defined by NVOL_STORE_START and NVOL_STORE_SIZE. In case the window size is

too small, the function MCOUSER_FatalError will be called.

8.4.7 #define NR_OF_SDOSERVER [0]

Defines the number of SDO servers implemented. A value of greater than one is currently only supported

for CiA447 (car add-on devices) applications.

Set to zero for CANopen FD.

8.4.8 #define USE_SLEEP [0|1]

Defines if the sleep mode as first introduced by CiA447-1 is implemented. If enabled, the call-back func-

tion MCOUSER_Sleep() must be implemented.

8.5 CANopen FD Settings of nodecfg.h
These are the settings available for USDO servers. Note that USDO Client related settings are described in

the Micro CANopen Manager manual for consistency.

8.5.1 #define USE_CANOPEN_FD [0|1]

Only effective with CANopen FD modules available in the project.

42 EmSA’s CANopen Libraries for NXP SDK

Enables CANopen FD related functionality in base stack and add ons. In particular, all uses of the SDO

protocol are replaced by USDO.

8.5.2 NR_OF_USDO_CONNECTIONS [2]

For USDO servers, defines the number of USDO connections that the server can handle in parallel before it

aborts a new connection attempt.

8.5.3 USDOSEGSRVRX_B2B_PROC [0]

For USDO servers, in USDO block downloads, this minimum processing time (in .1 milliseconds) for back-

to-back segments is sent to the requesting client. Use 0 to disable.

8.5.4 USDOSEGSRVRX_REQ_TIMEOUT [2500]

A USDO segmented or block receive connection will only stay open if the next request arrives within this

timeout (milliseconds).

8.6 Other Settings of nodecfg.h

8.6.1 #define USE_CiA447 [0]

Enables the CiA 447 specific support for the device profile for car add-on devices. This will need the

CiA447 add-on module to Micro CANopen Plus to build.

Must be set to zero for CANopen FD.

8.6.2 #define USE_SDOMESH [0]

Enables the SDO fully-meshed setup for SDO communication in any direction between up to 16 nodes in a

network.

Must be set to zero for CANopen FD.

8.7 User Call-Back Functions of nodecfg.h

8.7.1 #define USECB_NMTCHANGE [0|1]

When USECB_NMTCHANGE is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_NMTChange to signal a change in the NMT Slave State to the application.

8.7.2 #define USECB_SYNCRECEIVE [0|1]

When USECB_SYNCRECEIVE is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_SYNCReceived to signal the reception of the SYNC signal to the application.

8.7.3 #define USECB_RPDORECEIVE [0|1]

When USECB_RPDORECEIVE is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_RPDOReceived to signal the reception of an RPDO to the application.

43 Appendix – CANopen Code Configuration

8.7.4 #define USECB_ODDATARECEIVED [0|1]

When USECB_ODDATARECEIVED is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_ODData to signal the application that data was received and copied into the process image.

This is called for both PDO and SDO/USDO accesses.

8.7.5 #define USECB_TPDORDY [0|1]

When USECB_TPDORDY is enabled, Micro CANopen Plus calls the function MCOUSER_TPDOReady right

before it sends a TPDO. This allows the application to update the TPDO data before it is sent, if necessary.

8.7.6 #define USECB_SDOREQ [0|1]

When USECB_SDOREQ is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_SDORequest to signal the reception of an unknown SDO/USDO request to the application.

8.7.7 #define USECB_SDO_RD_PI [0|1]

When USECB_SDO_RD_PI is enabled, Micro CANopen Plus uses the call-back function MCOUSER_SDORdPI

to signal to the application, that an SDO/USDO read request for data located in the process image was

received. The call-back is executed BEFORE Micro CANopen Plus executes the read, allowing the

application to either update the data or deny access to it.

8.7.8 #define USECB_SDO_RD_AFTER [0|1]

When USECB_SDO_RD_AFTER is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_SDORdAft to signal to the application, that an SDO/USDO read request for data located in the

process image was executed. The call-back is executed AFTER Micro CANopen Plus executes the read,

allowing the application to mark the data as read or clear it.

8.7.9 #define USECB_SDO_WR_PI [0|1]

When USECB_SDO_WR_PI is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_SDOWrPI to signal to the application, that an SDO/USDO write request for data stored in the

process image was received. The call-back is executed BEFORE Micro CANopen Plus copies the data to the

process image, allowing the application to verify the data (e.g. execute a range check).

8.7.10 #define USECB_SDO_WR_AFTER [0|1]

When USECB_SDO_WR_AFTER is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_SDOWrAft to signal to the application, that an SDO/USDO write request for data located in the

process image was executed. The call-back is executed AFTER Micro CANopen Plus executes the write,

allowing the application to now use the data received.

8.7.11 #define USECB_APPSDO_READ [0|1]

When USECB_APPSDO_READ is enabled, Micro CANopen Plus uses the call-back function

MCOUSER_AppSDOReadInit to allow the application to implement access to readable, custom Object

Dictionary entries of various lengths. One usage example would be a text buffer that can contain messages

of different lengths.

44 EmSA’s CANopen Libraries for NXP SDK

The parameters for MCOUSER_AppSDOReadInit also include return values for a size and pointer – these

can be used to inform Micro CANopen Plus of the location and size of the buffer that contains the

“response”.

8.7.12 #define USECB_APPSDO_WRITE [0|1]

When USECB_APPSDO_WRITE is enabled, Micro CANopen Plus uses the call-back functions

MCOUSER_AppSDOWriteInit and MCOUSER_AppSDOWriteComplete to allow the application to

implement access to writable, custom Object Dictionary entries of various lengths. One usage example

would be text display that can accept text messages of various length.

The parameters for MCOUSER_AppSDOWriteInit also include return values for a receive buffer and its

size. Micro CANopen Plus copies the data received to the location specified.

With MCOUSER_AppSDOWriteComplete Micro CANopen Plus informs the application that data was

received and now has to be processed. The parameter “more” indicates if all data was received or more

will follow, in which case the application needs to read all data from the buffer as it will be overwritten

with the following data segments.

8.8 Manager and common SDO/USDO settings of nodecfg.h

8.8.1 #define MONITOR_ALL_NODES [0|1]
If enabled, activates all Manager functionality, including heartbeat and emergency monitoring of all nodes

from node ID 1 to MAX_NR_OF_NODES.

8.8.2 #define USE_FULL_NODELIST [0|1]
If this is enabled, the Manager autonomously maintains a node list. It does so by using the highest SDO

client channel to actively scan CANopen devices found in the network. The application can get access to

the node list using the function MGR_GetNodeInfoPtr.

With the additional define of NODELIST_WITH_IDOBJECT the entire ID Object [1018h] with all 4 subentries

is added to the node list.

8.8.3 #define NR_OF_HBCHECKS_PERCYCLE [num]
Defines the number of heartbeat lost checks that are made with each call to MGR_ProcessMgr(). A higher

number ensures a faster response to nodes lost, however, requires verifying up to 127 timeouts with each

call. Default is four.

8.8.4 #define NR_OF_SDO_CLIENTS [num]
Number of SDO or USDO client channels that the node can use at the same time. If auto-scan is used

(USE_FULL_NODELIST==1), the highest channel number is reserved for the scanning and must not be used

by the application. Default is 8 channels.

8.9 SDO settings of nodecfg.h

8.9.1 #define SDO_REQUEST_TIMEOUT [num]
Defines the default timeout used for SDO requests in milliseconds. After a request is sent, the timeout

starts, if a node does not respond within the timeout, the manager assumes the node does not exist. De-

fault is 50 milliseconds.

8.9.2 #define SDO_BACK2BACK_TIMEOUT [num]
Defines the timeout used between the transmissions of SDO requests in milliseconds. A Manager should

itself not produce 100% bus load which could easily happen if many SDO configurations need to be done

and when using multiple SDO channels in parallel. This timeout delays back to back transmits by the man-

ager. Default is three milliseconds.

45 Appendix – CANopen Code Configuration

8.9.3 #define USE_BLOCKED_SDO_CLIENT [0|1]
If enabled, activates the SDO block-transfer support for the SDO client.

8.9.4 #define SDO_BLK_MAX_SIZE [4-127]
If block-transfer for the SDO client is enabled, this sets the maximum number of blocks allowed.

8.9.5 #define SDOCLNTCB_APPSDO_WRITE [0|1]
If enabled, allow SDO client writes/downloads of longer data than local buffer. Enables

SDOCLNTCB_SDOWriteInit and SDOCLNTCB_SDOWriteComplete call-back functions.

8.10 USDO settings of nodecfg.h

8.10.1 #define USDO_REQUEST_TIMEOUT [num]
Defines the default timeout used for USDO requests in milliseconds. After a request is sent, the timeout

starts, if a node does not respond within the timeout, the SDO client assumes the node does not exist.

Default is 250 milliseconds.

8.10.2 #define USDO_B2BDELAY_MAX [num]
During download, the USDO client receives, from each server, a desired segment processing time. It hon-

ors these as long as they don't delay back-to-back messages more than the time given here (in millisec-

onds).

8.10.3 #define USDO_FLAGTYPE_64 [0|1]
The USDO client supports managing up to 64 server nodes during broadcast communication when the

UNSIGNED64 (unsigned long long) data type is available, or 32 otherwise. Enable if the data type is availa-

ble.

8.10.4 #define USDOCLNTCB_APPSDO_WRITE [0|1]
If enabled, allow USDO client writes/downloads of longer data than local buffer. Enables

USDOCLNTCB_USDOWriteInit and USDOCLNTCB_USDOWriteComplete call-back functions.

	Software License
	Contents
	1 About CANopen (FD)
	1.1 CANopen Documentation and Terms
	1.2 CANopen and CANopen FD
	1.3 CANopen Devices and CANopen Manager

	2 CANopen (FD) in the NXP SDK
	2.1 Release notes
	2.2 The License Summary
	2.3 CANopen vs CANopen FD
	2.4 CANopen Devices and CANopen Manager
	2.4.1 Features of the CANopen Device Library
	2.4.2 Features of the CANopen Manager Library (incl. Device Library)

	2.5 Object Dictionary Configurability
	2.6 Limitations
	2.7 Extended testing and debugging

	3 Getting started, step-by-step
	3.1 Hardware setup
	3.2 Network Monitoring
	3.3 Loading the Software
	3.4 Running the examples
	3.5 CANopen Device: generic I/O Example Application
	3.6 CANopen Manager: Control Example Application

	4 Using the CANopen Libraries
	4.1 File and Directory Structure
	4.1.1 Common Shared Directory
	4.1.2 Library Directory
	4.1.3 Configuration Directory
	4.1.4 Application Directory
	4.1.5 Project Directory

	4.2 CANopen Functional Overview
	4.2.1 Node ID
	4.2.2 Process Image Usage
	4.2.3 Object Dictionary and SDO/USDO Server
	4.2.4 Heartbeat Producer
	4.2.5 PDO Parameters
	4.2.6 Number of PDOs
	4.2.7 Emergency Producer and Emergency messages
	4.2.8 Emergency Consumer
	4.2.9 Heartbeat Consumer
	4.2.10 Store Parameters
	4.2.11 Layer Setting Services

	5 Application Interface
	5.1 The Process Image
	5.1.1 Configuration of the Process Image
	5.1.2 Accessing the Process Image
	5.1.3 Data alignment
	5.1.4 Data Integrity of the Process Image in an RTOS Environment

	5.2 Object Dictionary Configuration
	5.3 CANopen API Functions and Macros
	5.3.1 The MCO_Init function
	5.3.2 The MCO_InitxPDOx functions
	5.3.3 The MCO_ProcessStack function
	5.3.4 The MCO_TriggerTPDO function
	5.3.5 The MCOP_InitHBConsumer function
	5.3.6 The MCOP_PushEMCY and MCOP_PushEMCYFD functions
	5.3.7 Process Image Access Macros: The PI_READ macro
	5.3.8 Process Image Access Macros: The PI_WRITE macro
	5.3.9 Process Image Access Macros: The PI_COMP macro
	5.3.10 Default Process Image Access Macros
	5.3.11 Macros for PDO process image access

	5.4 CANopen API Call-Back Functions
	5.4.1 The MCOUSER_ResetCommunication function
	5.4.2 The MCOUSER_ResetApplication function
	5.4.3 The MCOUSER_GetSerial function
	5.4.4 The MCOUSER_NMTChange function
	5.4.5 The MCOUSER_FatalError function
	5.4.6 The MCOUSER_ODData function
	5.4.7 The MCOUSER_SYNCReceived function

	5.5 Manager API
	5.5.1 The MGR_ProcessMgr function
	5.5.2 The MGR_TransmitNMT function

	5.6 Manager Multi-Scan API
	5.6.1 The MGRSCAN_Init function
	5.6.2 The MGRSCAN_GetStatus function

	5.7 Manager API Call-Back Functions
	5.7.1 The MGRCB_NodeStatusChanged function

	5.8 SDO Client API
	5.8.1 The SDOCLNT_ResetChannels function
	5.8.2 The SDOCLNT_Init function
	5.8.3 The SDOCLNT_Read function
	5.8.4 The SDOCLNT_ReadXtd function
	5.8.5 The SDOCLNT_Write function
	5.8.6 The SDOCLNT_WriteXtd function
	5.8.7 The SDOCLNT_GetStatus function
	5.8.8 The SDOCLNT_GetLastAbort function
	5.8.9 The SDOCLNT_BlockUntilCompleted function
	5.8.10 The SDOCLNT_ReadCycle function
	5.8.11 The SDOCLNT_WriteCycle function
	5.8.12 The SDOCLNTCB_SDOComplete call-back function

	6 Appendix – Using Auto-Generated Sources
	6.1 File Generation
	6.2 File Integration
	6.2.1 pimg.h
	6.2.2 stackinit.h
	6.2.3 entriesandreplies.h

	7 Appendix – RTOS Integration
	7.1 RTOS Task: Receive and Tick
	7.2 Process Image Integrity

	8 Appendix – CANopen Code Configuration
	8.1 Default Configuration of nodecfg.h
	8.1.1 #define ENFORCE_DEFAULT_CONFIGURATION [0|1]

	8.2 General Settings of nodecfg.h
	8.2.1 #define USE_MCOP [1]
	8.2.2 #define CHECK_PARAMETERS [0|1]
	8.2.3 #define USE_LEDS [0|1]

	8.3 PDO Settings of nodecfg.h
	8.3.1 #define NR_OF_RPDOS [num]
	8.3.2 #define NR_OF_TPDOS [num]
	8.3.3 #define USE_EVENT_TIME [0|1]
	8.3.4 #define USE_INHIBIT_TIME [0|1]
	8.3.5 #define USE_SYNC [0|1]
	8.3.6 #define USE_DYNAMIC_PDO_MAPPING [0|1]

	8.4 NMT Service Settings of nodecfg.h
	8.4.1 #define AUTOSTART [0|1]
	8.4.2 #define DEFAULT_HEARTBEAT [ms]
	8.4.3 #define DYNAMIC_HEARTBEAT_CONSUMER [0|1], #define NR_HB_CONSUMER [num]
	8.4.4 #define USE_EMCY [0|1], #define ERROR_FIELD_SIZE [num]
	8.4.5 #define USE_NODE_GUARDING [0]
	8.4.6 #define USE_STORE_PARAMETERS [0|1], #define NVOL_STORE_START [num], #define NVOL_STORE_SIZE [num]
	8.4.7 #define NR_OF_SDOSERVER [0]
	8.4.8 #define USE_SLEEP [0|1]

	8.5 CANopen FD Settings of nodecfg.h
	8.5.1 #define USE_CANOPEN_FD [0|1]
	8.5.2 NR_OF_USDO_CONNECTIONS [2]
	8.5.3 USDOSEGSRVRX_B2B_PROC [0]
	8.5.4 USDOSEGSRVRX_REQ_TIMEOUT [2500]

	8.6 Other Settings of nodecfg.h
	8.6.1 #define USE_CiA447 [0]
	8.6.2 #define USE_SDOMESH [0]

	8.7 User Call-Back Functions of nodecfg.h
	8.7.1 #define USECB_NMTCHANGE [0|1]
	8.7.2 #define USECB_SYNCRECEIVE [0|1]
	8.7.3 #define USECB_RPDORECEIVE [0|1]
	8.7.4 #define USECB_ODDATARECEIVED [0|1]
	8.7.5 #define USECB_TPDORDY [0|1]
	8.7.6 #define USECB_SDOREQ [0|1]
	8.7.7 #define USECB_SDO_RD_PI [0|1]
	8.7.8 #define USECB_SDO_RD_AFTER [0|1]
	8.7.9 #define USECB_SDO_WR_PI [0|1]
	8.7.10 #define USECB_SDO_WR_AFTER [0|1]
	8.7.11 #define USECB_APPSDO_READ [0|1]
	8.7.12 #define USECB_APPSDO_WRITE [0|1]

	8.8 Manager and common SDO/USDO settings of nodecfg.h
	8.8.1 #define MONITOR_ALL_NODES [0|1]
	8.8.2 #define USE_FULL_NODELIST [0|1]
	8.8.3 #define NR_OF_HBCHECKS_PERCYCLE [num]
	8.8.4 #define NR_OF_SDO_CLIENTS [num]

	8.9 SDO settings of nodecfg.h
	8.9.1 #define SDO_REQUEST_TIMEOUT [num]
	8.9.2 #define SDO_BACK2BACK_TIMEOUT [num]
	8.9.3 #define USE_BLOCKED_SDO_CLIENT [0|1]
	8.9.4 #define SDO_BLK_MAX_SIZE [4-127]
	8.9.5 #define SDOCLNTCB_APPSDO_WRITE [0|1]

	8.10 USDO settings of nodecfg.h
	8.10.1 #define USDO_REQUEST_TIMEOUT [num]
	8.10.2 #define USDO_B2BDELAY_MAX [num]
	8.10.3 #define USDO_FLAGTYPE_64 [0|1]
	8.10.4 #define USDOCLNTCB_APPSDO_WRITE [0|1]

