
Embedded Systems Academy – www.ESAcademy.com

ESAcademy
Recommended Practice

CANopen API

W O R K D R A F T

Rev 0.6 of August 18th, 2003 – First Published Version

ESAcademy – CANopen API

 2

Table of Content
Table of Content ... 2
1 Motivation and Introduction .. 3

1.1 Definition of Terms... 3
1.2 Block Diagram .. 5

2 Interface Implementation Options ... 6
2.1 Interfacing with Programming Languages 6
2.2 Interfacing with a Message System .. 6

3 Using a Process Image... 7
3.1 The CANopen API Process Image.. 7
3.2 Configuring the Usage of the Process Image.................................. 7
3.3 Accessing the Process Image.. 7

4 CANopen API Functions ... 8
4.1 Requests from Host to CANopen Task .. 8

4.1.1 Function GetID ... 8
4.1.2 Function GetStatus .. 9
4.1.3 Function InitCANopen...10
4.1.4 Function ReadProcessData ...11
4.1.5 Function WriteProcessData ..12

4.2 Indications from CANopen Task to Host ..13
4.2.1 Callback Function NMTChange...13
4.2.2 Callback Function ReceivedData ..14
4.2.3 Callback Function FatalError..15

5 CANopen Task Setup File ..16
5.1 Generic Setup File Format ...16
5.2 Entries in the Setup File ..16

5.2.1 Entry [ID]..17
5.2.2 Entry [NODE] ..17
5.2.3 Entry [RPDO] ..18
5.2.4 Entry [TPDO]...19
5.2.5 Entry [COD]...20
5.2.6 Entry [RWOD] ...21
5.2.7 Entry [PIMG] ...23

ESAcademy – CANopen API

 3

1 Motivation and Introduction
The networking standard CANopen does not specify or standardize an application
programming interface (API) for accessing the CANopen network protocol stack
of CANopen nodes. Most existing CANopen implementations use their own API
and as a result once a specific CANopen solution is implemented, there is no easy
migration path to port an existing CANopen application to a different CANopen
protocol stack.

This document describes an open application programming interface (API) for
CANopen slave nodes. All CANopen solutions providing this API are
interchangeable and allow the developer of a CANopen node to switch between
different implementations with different functionality or performance. A
CANopen design started based on a basic or minimal CANopen implementation
could still be upgraded later.

One of the main goals of the API is to hide as many CANopen specific details
from the host (application process) as possible. The host only worries about the
process data it exchanges with the network. When and how the data is transmitted
is entirely left to the CANopen implementation and its configuration.

1.1 Definition of Terms
This document uses many CANopen specific terms and abbreviations. All
CANopen terms used are explained in the CANopen standard as published by the
CiA (CAN in Automation manufacturer’s group) in document DS301.
In addition, the following terms and abbreviations are used in this document:

ACK
Positive acknowledgement used on a message oriented interface between the Host
and the CANopen Task. The previously sent request or command executed
successfully.

BYTE
All parameters, values and numbers in this document are BYTE oriented. In C
programming language, a BYTE is a “unsigned char”.

CANopen API
The CANopen API is the application programming interface used between the
Host and the CANopen Task.

ESAcademy – CANopen API

 4

CANopen Task
The CANopen Task is the part of a CANopen implementation that executes all
functions related to the CANopen protocol. The CANopen Task can either be
executed on the same microcontroller as the Host or it can be running on an
additional microcontroller implementing a CANopen coprocessor.

FALSE
A function that returns FALSE returns the value 00h.

Host
The Host is the part of a CANopen implementation that executes all functions
related to processing the application. The code implementing the Host
functionality can either be executed on the same microcontroller that is running
the code for the CANopen Task or it can be executed on a separate
microcontroller if the CANopen Task runs on its own, dedicated microcontroller.

NAK
Negative acknowledgement used on a message oriented interface between the
Host and the CANopen Task. The previously sent request or command did not
execute successfully.

Process Image
The process data that can be exchanged between the Host and the CANopen Task
is organized into a process image, an array of bytes.

TRUE
A function that returns TRUE returns the value FFh.

ESAcademy – CANopen API

 5

1.2 Block Diagram
The block diagram below shows the main function blocks of a CANopen node
based on the CANopen API. The CANopen Task implements all the basic
CANopen features and functions required by the node. It also holds all
configuration data like which Object Dictionary entries are stored where in the
Process Image and which bytes from the Process Image are mapped into which
PDOs (Process Data Objects).

The Host implements the main process control application and directly handles all
inputs and outputs to and from the application process. Using the CANopen API,
the Host can exchange selected process data with the CANopen Task which is
stored into the Process Image.

The Host and the CANopen Task can either be implemented on a single
microcontroller running as separate tasks or functions or they can be implemented
on two dedicated microcontrollers using a message oriented communication
channel (for example shared memory with mail boxes or a serial channel)
between them.

ESAcademy – CANopen API

 6

2 Interface Implementation Options
CANopen implementations are available in a wide range of product types. There
are software solutions in form of a code library or source code and there are
hardware solutions implementing CANopen peripheral coprocessors on chips or
modules.

The CANopen API introduced in this document is language and communication
channel independent. The commands and responses defined can be used with any
programming language as well as on communication channels, such as a serial
channel between the application and the CANopen implementation.

2.1 Interfacing with Programming Languages
When the interface is a programming language, then a set of functions are used by
the Host to send requests to the CANopen Task. All functions have a return value
so that the Host gets immediate feedback if the request was executed successfully
or not.

Indications from the CANopen Task back to the host are sent via call-back
functions. These are functions that must be implemented within the Host program,
as they will be called by the CANopen Task

2.2 Interfacing with a Message System
When a message system is used as a communication channel between the Host
and the CANopen Task, then each function is identified with a function code.

The end of every message sent from the Host to the CANopen Task is marked
with a semi-colon “;”. The end of every message or response sent from the
CANopen Task to the Host is marked with a dot “.” or an exclamation mark “!”.
The “.” is used as an acknowledgement (ACK) in response to a request or to mark
the end of an indication. The “!” is used as a negative acknowledge (NAK) to
inform the host that the last request could not be executed.

ESAcademy – CANopen API

 7

3 Using a Process Image
The host of a device with CANopen network access primarily deals with process
data. It has a set of input variables tha t come from the application and are
transmitted into the network and/or it has a set of output variables that are
received from the network and applied to the application.

3.1 The CANopen API Process Image
In order to offer a generic method for addressing and exchanging the process data,
the process data is organized into a process image which is implemented as an
array of bytes with a maximum length of 255.

A single variable of the process image can be addressed by specifying an offset
and a length. The offset specifies where in the process image the first byte of a
variable is stored and the length specifies how many bytes are used to store the
variable. The offset may have a value from 0 to 254. Using an offset of 255
indicates that the offset is invalid or unused.

If numeric values are stored in multiple byte variables, then the format is
CANopen compatible: Little Endian – the lower bytes are stored at the lower
offset.

3.2 Configuring the Usage of the Process Image
Where exactly which variable is located in the process image is part of the
CANopen node configuration process. Whichever tool is used to configure the
CANopen part of the node also should configure the usage of the process image.

The CANopen configuration process also includes assigning an Object Dictionary
Index and Subindex to each variable and to configure the PDOs (Process Data
Objects) containing one or multiple process data variables. For more details on
the configuration of the process image, see chapter 5.

3.3 Accessing the Process Image
To provide data consistency in the process image the data in it should never be
used directly (like a host writing directly to the process image). Instead, the
functions specified by this document should be used. Ensuring data consistency is
the responsibility of these access functions.

ESAcademy – CANopen API

 8

4 CANopen API Functions

4.1 Requests from Host to CANopen Task
This section lists all the commands/requests send from the Host to the CANopen
Task. Examples are given for both an implementation using C function calls and
using a message system (for example a serial channel).

4.1.1 Function GetID
This function allows the Host to request identification information from the
CANopen Task.

Name GetID
Code ‘V’, 53h
Parameter None
Returns The 4 identification bytes of the CANopen task including a

version number.

The 4 identification bytes are configurable and can be used to identify specific
implementations or configurations of the CANopen Task. The first two bytes
contain a manufacturer specific identification for this particular CANopen Task
(first byte contains low-byte and second byte contains high-byte). Values from
F000h to FFFFh are reserved and should not be used. The remaining two bytes
contain a version number with the third byte being a minor version number and
the fourth byte the major version number.

Typically these 4 identification bytes are configurable. See chapter 5 for more
details on the configuration of the CANopen Task.

C-Example:

BYTE[4] COAPI_GetID
(void);

Message-Example:
 Request: V;
 ACK: <identification bytes>.

ESAcademy – CANopen API

 9

4.1.2 Function GetStatus
This function allows the Host to check upon the general status of the CANopen
Task.

Name GetStatus
Code ‘S’, 53h
Parameter None
Returns The status byte of the CANopen task

The following values are defined for the status byte of the CANopen Task:

Status Description
Bit 0-1 Basic Status of the CANopen Task:

00b – Not yet ready to operate, still initializing
01b – Ready to operate, waiting for Host to send the
InitCANopen command
10b – CANopen Task is initialized and operating
11b – Reserved

Bit 2-4 Size of the Process Image :
(value + 1) * 32
Exception: In case of 111b the size is 255

Bit 5-7 Reserved

C-Example:

BYTE COAPI_GetStatus
(void);

Message-Example:
 Request: S;
 ACK: <status byte>.

ESAcademy – CANopen API

 10

4.1.3 Function InitCANopen
The Host must call this function to initialize the CANopen Task. Without this call
the CANopen Task does not start to operate. Repetitious calls cause the CANopen
Task to re- initialize.

Name InitCANopen
Code ‘I’, 49h
Parameter bps – The CANopen bit rate used

nodeid – The CANopen node ID used
Returns TRUE or ACK, if initialization was successful

FALSE or NAK , if initialization was not successful

The “bps” value must be in the range of 1 to 8 representing one of the bit rates
listed below. If “bps” has a value of zero, the CANopen Task will use its internal
default setting for the bit rate.

Baudrate Bps Value
1 MBit/s 8
800 kBit/s 7
500 kBit/s 6
250 kBit/s 5
125 kBit/s 4
50 kBit/s 3
20 kBit/s 2
10 kBit/s 1

The value “nodeid” selects the CANopen node ID used by this node and must
be in the range of 1 to 127. If “nodeid” is zero, the CANopen Task will use its
default node ID number.

C-Example:

BYTE COAPI_InitCANopen
(BYTE bps, BYTE nodeid);

Message-Example:
 Request: I<bps><nodeid>;
 ACK: .
 NAK: !

ESAcademy – CANopen API

 11

4.1.4 Function ReadProcessData
This function is used by the Host to read data from the Process Image.

Name ReadProcessData
Code ‘R’, 52h
Parameter offset – Offset to first requested byte from Process

Image
len – Number of bytes requested
pDat – Destination pointer to where requested data should
be copied

Returns Number of bytes read from Process Image.
Zero if no bytes were returned (due to illegal values for
offset and len)

The parameter “offset” selects the offset the first byte requested has in the
Process Image. The parameter “len” specifies how many bytes starting at
“offset” will be copied to the location set by the pointer “pDat”.

The return value indicates the number of data bytes actually copied. It will be zero
if “offset” is bigger than the Process Image or might be a value smaller than
“len” if the end of the Process Image is reached with the read request.

C-Example:

BYTE COAPI_ReadProcessData
(BYTE offset, BYTE len, BYTE *pdata);

Message-Example:
 Request: R<offset><len>;
 ACK: <len><data bytes>.
 NAK: 0!

ESAcademy – CANopen API

 12

4.1.5 Function WriteProcessData
This function is used by the Host to write data to the Process Image.

Name WriteProcessData
Code ‘W’, 57h
Parameter offset – Offset to first destination byte in Process Image

len – Number of bytes to be written
pDat – Source pointer to the data copied to the Process
Image

Returns Number of bytes written to Process Image.
Zero if no bytes were written (due to illegal values for
offset and len)

The parameter “offset” selects the offset the first byte written to has in the
Process Image. The parameter “len” specifies how many bytes starting at
“offset” will be copied into the Process Image from the source indicated by the
pointer “pDat”.

The return value indicates the number of data bytes actually copied. It will be zero
if “offset” is bigger than the Process Image or might be a value smaller than
“len” if the end of the Process Image is reached with the write request.

C-Example:

BYTE COAPI_WriteProcessData
(BYTE offset, BYTE len, BYTE *pdata);

Message-Example:
 Request: W<offset><len><data>;
 ACK: <len>.
 NAK: 0!

ESAcademy – CANopen API

 13

4.2 Indications from CANopen Task to Host
This section lists all the indications from the CANopen Task to the Host.
Examples are given for both an implementation using C call-back functions
(called from CANopen API, must be implemented by Host) and using a message
system (for example a serial channel).

4.2.1 Callback Function NMTChange
This indicates that the CANopen Task changed its CANopen Network
Management state or received a request to reset itself.

Name NMTChange
Code ‘n’, 6Eh
Parameter nmtstate – The current NMT state of the CANopen

node

The value “nmtstate” can have one of the following values:

nmtstate Description
00h Initializing (sent after receiving the ‘I’ command)
04h CANopen NMT state “stopped” entered
05h CANopen NMT state “operational” entered
7Fh CANopen NMT state “pre-operational” entered
81h The CANopen Task received an NMT request to reset the

entire CANopen node, the Host should reset itself
82h The CANopen Task received an NMT request to reset the

CAN communication interface
other All other values are reserved

C-Example:

void COAPICB_NMTChange
(BYTE nmtstate);

Message-Example:
 Sent by Task: n<nmtstate>.

ESAcademy – CANopen API

 14

4.2.2 Callback Function ReceivedData
This is an indication from the CANopen Task that new data arrived and was
copied into the Process Image. To read the data, the Host needs to call the
function ReadProcessData.

Name ReceivedData
Code ‘d’, 64h
Parameter offset – Offset to first byte in Process Image that was

received from CANopen
len – Number of bytes that were received

The parameter “offset” specifies the location of the first byte in the process
image that was updated via CANopen and “len” indicates the number of bytes
that were updated.

C-Example:

void COAPICB_ReceivedData
(BYTE offset, BYTE len);

Message-Example:
 Sent by Task: d<offset><len>.

NOTE:
If a RPDO contains data that is copied to consecutive entries in the process image,
only one indication will be issued by the CANopen Task. If due to the RPDO
mapping the data goes to non-consecutive locations in the process image, then
multiple indications will be issued. It is recommended to ensure that data
belonging to the same RPDO is stored in consecutive locations in the process
image.

ESAcademy – CANopen API

 15

4.2.3 Callback Function FatalError
This indication signals the Host that the CANopen Task ran into a fatal
error situation and needs to be reset or re-initialized to start operation
again.

Name FatalError
Code ‘f’, 66h
Parameter errorcode – an internal error code

C-Example:

void COAPICB_FatalError
(BYTE errorcode);

Message-Example:
 Sent by Task: f<error code>.

ESAcademy – CANopen API

 16

5 CANopen Task Setup File

Although working with CANopen EDS and DCF files is the standard procedure
for many CANopen configuration tools, these file formats are not very suitable to
be handled by embedded microcontrollers. This document recommends the usage
of an ASCII file optimized towards the setup of the CANopen Task.

5.1 Generic Setup File Format
The setup file is an ASCII text file with the default ending of “.txt” to allow
simple editing with any text editors.

The file content is organized by lines. Lines starting with a semi-colon “;” or a
slash “/” are regarded comment and are ignored. So are all spaces, line-feed and
return characters.

All data values are in hexadecimal, using capitalized letters for the letters “A”
through “F”. Additional characters like “0x” or “h” are not allowed. If multiple
bytes are used for a data value (for example WORD or DWORD), the byte
ordering is Little Endian (lower significant byte(s) first).

The first line MUST start with the 8 characters “COPTSKA8”. Additional
characters may be used to indicate a version number, for example
“COPTSKA8 V1.0”

It is recommended to make the second line a comment line with details about the
purpose of this configuration and a generation timestamp, for example
“// For MyEncoder, generated on 18-AUG-03 by John Doe”

5.2 Entries in the Setup File
Each entry section starts with a line containing a label in square brackets. All
labels use upper case letters only, for example: “[NODE]”. This section contains a
list of all labels defined. Note that the label length is kept short, to simplify
processing for embedded microcontrollers.

The line or lines following a label contain the data values for that entry.

ESAcademy – CANopen API

 17

The last line of an entry contains a single byte, the checksum for this entry. The
checksum byte is calculated by adding up all bytes of the entry.

5.2.1 Entry [ID]
This is the 4-byte identification value reported by the CANopen Task when the
Host uses the “GetID” function (see section 4.1.1).

The first two bytes contain a manufacturer specific identification for this
particular CANopen Task (first byte contains low-byte and second byte contains
high-byte). Values from F000h to FFFFh are reserved and should not be used.
The remaining two bytes contain a version number with the third byte being a
minor version number and the fourth byte the major version number.

5.2.2 Entry [NODE]
This data field contains a data record with the basic setup information for the
CANopen Task.

Byte Nr. Name Description
1 Bps Default CAN bit rate. Same contents as used for the

function InitCANopen (see section 4.1.3)
2 Node ID Default CANopen bit rate. Same contents as used for

the function InitCANopen (see section 4.1.3)
3 Process

Image Size
The size of the process image used by the CANopen
Task. Maximum size allowed is 255.

4 Nr of RPDOs The number of RPDOs used by the CANopen Task.
5 Nr of TPDOs The number of TPDOs used by the CANopen Task.
6 Functionality Each bit in this entry can disable/enable a certain

CANopen functionality in the CANopen Task, such
as allowing dynamic PDO mapping or not. Usage is
manufacturer specific.

Example:

[NODE]
044020020200
68

The example selects a default bit rate of 125kbps, a default node ID of 40h (64d),
a process image size of 20h (32d), 2 RPDOs and 2 TPDOs. The checksum for this
entry is 68h.

ESAcademy – CANopen API

 18

5.2.3 Entry [RPDO]
This data entry contains the communication and mapping parameters for each
RPDO used. The number of data fields must be matching the Nr of RPDOs value
used in the entry [NODE].

The first data field contains 3 bytes for each RPDO holding the communication
parameters. The first 2 bytes set the COB-ID and the 3rd byte the transmission
type.

Byte Nr. Name Description
1-2 COB-ID RPDO COB-ID, leave at zero to use default
2 Transmission

Type
RPDO transmission type, typically FEh or FFh

The second data field contains 9 bytes for each RPDO holding the mapping
parameters. The first byte of each entry specifies the number of entries mapped.
Allowed values are 0 through 8. The following entries identify the Object
Dictionary entry mapped using a single byte. The byte is the offset that the
mapped Object Dictionary entry has in the [RWOD] section. Unused bytes must
be set to FFh.

Byte Nr. Name Description
1 Nr of Entries Number of mapping entries for this RPDO
2-9 Mapping Mapping entries, each byte refers to an entry (starting

at 0) in the list of Object Dictionary entries [RWOD]

Example:

[RPDO]
0000FF
0000FF
0400010203FFFFFFFF
020405FFFFFFFFFFFF
09

The example is for Nr of RPDOs being two. The COB-IDs selected are zero,
meaning the CANopen default COB-IDs (from the pre-defined connection set)
should be used. The transmission type is FFh.

The first RPDO has 4 Object Dictionary entries mapped. The mapped entries are
the first 4 Object Dictionary entries listed in the [RWOD] section. The second

ESAcademy – CANopen API

 19

RPDO has 2 entries mapped. They are the 5th and 6th entries listed in [RWOD].
The checksum for this example is 09h.

5.2.4 Entry [TPDO]
This entry contains the communication and mapping parameters for each TPDO
used. The number of data fields must be matching Nr of TPDOs value used in the
entry [NODE].

The first data field contains 7 bytes for each TPDO holding the communication
parameters. The first 2 bytes set the COB-ID, the next 2 bytes the inhibit time, the
next 2 bytes the event time and the 7th byte the transmission type.

Byte Nr. Name Description
1-2 COB-ID TPDO COB-ID, leave at zero to use default
3-4 Inhibit Time The TPDO Inhibit Time in 100s of microseconds
5-6 Event Time The TPDO Event Time in milliseconds
7 Transmission

Type
TPDO transmission type, typically FEh or FFh

The second data field contains 9 bytes for each TPDO holding the mapping
parameters. The first byte of each entry specifies the number of entries mapped.
Allowed values are 0 through 8. The following entries identify the Object
Dictionary entry mapped using a single byte. The byte is the offset that the
mapped Object Dictionary entry has in the [RWOD] section. Unused bytes must
be set to FFh.

Byte Nr. Name Description
1 Nr of Entries Number of mapping entries for this TPDO
2-9 Mapping Mapping entries, each byte refers to an entry (starting

at 0) in the list of Object Dictionary entries [RWOD]

ESAcademy – CANopen API

 20

Example:
[TPDO]
0000F401FA00FF
0000C800E803FF
020607FFFFFFFFFFFF
020809FFFFFFFFFFFF
B6

The example is for Nr of TPDOs being two. The COB-IDs selected are zero,
meaning the CANopen default COB-IDs (from the pre-defined connection set)
should be used. The inhibit times are 01F4h (500d) for the first and 00C8h (200d)
for the second TPDO. The event times are 00FA (250d) for the first and 03E8
(1000d) for the second TPDO.

Both TPDOs have 2 Object Dictionary entries mapped. The mapped entries for
the first TPDO are the 7th and 8th Object Dictionary entries listed in the [RWOD]
section. The second TPDO use the 9th and 10th entries listed in [RWOD]. The
checksum for this example is B6h.

5.2.5 Entry [COD]
This entry contains a list of SDO responses for SDO requests to constant, read-
only entries in the object dictionary. Typically these contain the [1000,00] Device
Type entry, the [1018,xx] Identity Objects and the “Number of Entries” type
entries with a Subindex of zero.

Each entry in this list has 8 bytes that directly contain the 8 bytes used in a CAN
message with an expedited SDO response to a read (upload) request.

Byte Nr. Name Description
1 CS SDO response command specifier
2-3 Index Index of the Object Dictionary entry
4 Subindex Subindex of the Object Dictionary entry
5-7 Data Data bytes to be send in the response

The last entry in this list must consist of 8 bytes with the value FFh.

ESAcademy – CANopen API

 21

Example:
[COD]
4300100091010F00
430810004C585858
4F18100003000000
4318100141534501
431810024C58794D
4318100350000100
4F00600006000000
4F00620004000000
FFFFFFFFFFFFFFFF
xx

The example contains the SDO responses for the following Object Dictionary
entries:
[1000,00]: returns 000F0191h
[1008,00]: returns 5858584Ch (“XXXL”)
[1018,00]: returns 03h
[1018,01]: returns 01455341h
[1018,02]: returns 4D79584Ch
[1018,03]: returns 00010005h
[6000,00]: returns 06h
[6200,00]: returns 04h

5.2.6 Entry [RWOD]
This entry contains the list of Object Dictionary entries that address data in the
process image. Each entry in this list has 5 bytes.

Byte Nr. Name Description
1-2 Index Index of the Object Dictionary entry
3 Subindex Subindex of the Object Dictionary entry
4 Access and

length
This byte contains the access-type and length
information for this Object Dictionary entry, for
details see next table.

5 Offset Offset to a location in the process image where the
data for this Object Dictionary entry is stored.

The first 2 bytes specify the Index and the 3rd byte the Subindex of the Object
Dictionary entry. The 4th byte contains the length information combined with
access type bits. The bits in this byte are used as follows:

ESAcademy – CANopen API

 22

Bit Description
Bit 0-2 Length of the data in this Object Dictionary entry. Must be in

the range of 1 through 4
Bit 3 Reserved
Bit 4 If set, SDO read (upload) access is allowed
Bit 5 If set, SDO write (download) access is allowed
Bit 6 If set, this entry can be mapped to a PDO
Bit 7 If bit 6 is set, this bit specifies the direction of the mapping: If

0, the entry can be mapped to a TPDO only.
If 1, the entry can be mapped to a RPDO only.

The 5th byte indicated the offset to the data in the process image that belongs to
this Object Dictionary entry.

The last entry in this list must consist of 5 bytes with the value FFh.

Example:

[RWOD]
0060015100
0060025101
0060035102
0060045103
0060055104
0060065105
006201F106
006202F108
006203F108
006204F109
FFFFFFFFFF
xx

The Object Dictionary entries specified by this example are:
[6000,01]: read-only, TPDO mapping, 1 byte of process image at offset 0
[6000,02]: read-only, TPDO mapping, 1 byte of process image at offset 1
 through
[6000,06]: read-only, TPDO mapping, 1 byte of process image at offset 5
[6200,01]: read-write, RPDO mapping, 1 byte of process image at offset 6
 through
[6200,04]: read-write, RPDO mapping, 1 byte of process image at offset 9

ESAcademy – CANopen API

 23

5.2.7 Entry [PIMG]
This entry contains the default data for the process image. During initialization of
the CANopen Task, this data will be copied to the process image. The length of
this data field must be identical to the length of the process image specified in the
[NODE] entry.

Example:

[PIMG]
0011223344556677
8899AABBCCDDEEFF
0011223344556677
8899AABBCCDDEEFF
xx

